

 Portable Data Terminal

 PI-130 Programming Guide

Version: 2.05

Copyright © 2015 by ARGOX Information Co., Ltd.

http://www.argox.com

http://www.argox.com/

Preface

To satisfy the userôs customized needs, the PI-1X provide users to generate programs for their

actual demands. This allows users to collect data, execute function expression and store the

processed data with the application programs designed by their own.

Developers can use ARM Assembly or C code to create the program flow. And developers can

also link standard ANSI C function library to meet the demands through executing the

functions of input, output, expression and storage using the functions provided by PI-1X.

Later in this manual, youôll learn how to write, compile and link program, and also how to

download renewed codes and test functions via simulation. Finally, this manual will also

conclude the function illustration of PI-1X for your reference.

PI-1X Programming Guide 1

Table of Contents

Program Developing ... 3

Development Environment .. 3

Folder Structure: .. 3

Folder introduction: ... 3

Adding Source File: ... 4

Function Library ... 5

Standard Function Library ... 6

How to Build Your Program... 8

1. Install compiler .. 8

2. Edit Program: ..13

3. Compiler: ..13

4. Update your System: ...14

5. Development Notice: ...14

6. Download APP.bin ..14

7. Simulator(Only for debug in PC site) ...15

Upgrade System ...17

1. System Requirement:...17

2. Upgrade Procedure: ...17

3. Execute System: ..19

Utility & Others ...20

1. AID MAKER ..20

2. Font ..20

3. ScanSetting ...20

4. ServiceID Maker ...20

5. FileConverter ..20

6. DataMagic ..21

SDK Library ..22

SDK Functions list ...22

Reader ...31

Buzzer ...36

Calender ..38

File Manipulation ...40

DBMS ...58

LED ...68

PI-1X Programming Guide 2

Keypad ..69

LCD ..79

UserFont ..86

TextBlock ..87

Communication Ports ...91

Remote ..96

LinkingPort .. 108

System ... 115

Memory ... 120

Vibrate ... 122

Other ... 123

Simulator (Only for PC Simulator) .. 130

Data Conversion ... 131

RF ... 133

APPENDIX 1 .. 135

Scan Module (CCD) Configuration Table .. 135

CCD Barcode Type Table: .. 146

APPENDIX 2 .. 147

Scan Module (2D) Configuration Table ... 147

2D Barcode Type Table .. 157

PI-1X Programming Guide 3

Program Developing

Development Environment

 Folder Structure:

When open the SDK folder in the CD provided with the PI-1X, it will show the

structure as the following:

 Folder introduction:

 Upgrade:

For Fw upgrade, it has two sub folders, ñUgrade BIN fileò and ñUpgrade BAT fileò.

Õ Ugrade BIN file:

It has a bin file for firmware upgrade.

Õ Upgrade BAT file:

It has a exe file, ñDFUSender_PI.exeò, and has three bat files ñAll

Upgrade-COM1.batò, ñAll Upgrade-COM2.batò, and ñAll Upgrade-USB.batò.

If you want to upgrade firmware, you have to set PI-1X in force mode or

upgrade in supervisor menu and double click these bat file for download.

You can download bin file by PhoenixVoler in these status, too.

Please refer to the ñUpgrade Systemò section.

 SDK:

For SDK develop tools. It has two sub folders, ñDocumentò, ñTerminalò and

ñSample code for Terminalò

Õ Document:

PI-1X Programming Guide 4

It has one PDF file, ñTerminal.pdfò, this PDF file is introduct about how to use

SDK functions.

Õ Terminal:

For terminal develop environment.

Õ Sample code for Terminal:

For SDK sample, you can build and test it after download.

 Utility:

It has 4 sub folders, ñAID Makerò,ò Fontò,ò ScanSettingò, ñFileConverterò, and

ñServiceID Makerò.

Õ AID Maker:

For set PI-1X agency ID.

Õ Font:

You can make your font for PI-1X to display.

Õ ScanSetting:

To create a file for all scan settings.

Õ ServiceID Maker:

For set PI-1X Service ID.

Õ FileConverter :

Convert Source file to Output file with specified format and field.

 Adding Source File:

All user application program source files has to be placed under UserProg folder. If

you want to set your source file in other folder, you have to modify the ñmakefileò

under ñbuildò folder.

PI-1X Programming Guide 5

Function Library

 PI-1X Function Library supports user application program to perform the data

collection jobs. PI-1X Function Library provides variety of services, and

accomplishes special functions according to specific demands.

 When using the PI-1X Function Library, please add the import command

(ñLIB_CL.hò, ñDBMS.hò and ñDefine.hò) into the user program file (*.c) and the

function will be imported. In this case, the PI-1X Function Library file lib_PI1X.a is

needed.

 The PI-1X Function Library file Lib_PI1X.a is updated occasionally. For most update

version, please ask helps from your vendor or the manufacturer.

 PI-1X Function Library file Lib_PI1X.a is needed during compiling and linking for

generating App.bin.

 The update library release is LIB_CL.h. Please refer SDK Library section.

PI-1X Programming Guide 6

Standard Function Library

 The user application program in the data collector can perform the tasks to combine

standard C language function library. The function library is enclosed in the

developing environment (GCC cross compiler). After set up the developing

environment, you can use the include head file of standard C language function

library .The following are the available include head file list in standard C language

function library:

<assert.h>

__assert ;

<ctype.h>

isalnum; isalpha; iscntrl; isdigit; isgraph; islower; ispr; ispunct;

isspace; isupper; isxdigit; tolower; toupper;

<locale.h>

setlocale; localeconv;

<math.h>

acos; asin; atan; atan2; cos; sin; tan; cosh;

sinh; tanh; exp; frexp; ldexp; log; log10; modf;

pow; sqrt; ceil; fabs;__d_abs; floor; fmod;

<setjmp.h>

setjmp; longjmp;

<signal.h>

signal; raise;

<stdio.h>

sprintf; sscanf;

<stdlib.h>

atof; atoi; long atol; strtod; long strtol; strtoul; rand; srand;

_ANSI_rand; _ANSI_srand; abort; atexit; exit; getenv; system; bsearch;

qsort; abs; long labs;

<string.h>

strcpy; strncpy; strcat; strncat; memcmp; strcmp; strncmp; strcoll; strxfrm; strstr;

memset; strlen;

 If you need to use standard C language functions in the user program, please add

#include <header file name> in the top of the file to import the correlated include

head files. See following example:

#include <stdio.h>

PI-1X Programming Guide 7

#include <stdlib.h>

 The statements listed above will make Compiler and Linker to import all the

correlated functions to generate App.bin file.

PI-1X Programming Guide 8

How to Build Your Program

1. Install compiler

 Sourcery G++ Lite:

First, you have to get ñSourcery G++ Liteò and install it. You can get the install

file in the path:

http://www.codesourcery.com/sgpp/lite/arm/portal/package6496/public/arm-n

one-eabi/arm-2010q1-188-arm-none-eabi.exe

Double click this file, and you will start install

program. All options select default.

Then you can finish this install.

 Eclipse IDE for C/C++ Developers:

Before install ñEclipse IDE for C/C++ Developersò, if you donôt install ñJAVA

virtual machineò yet, you must install ñJAVA virtual machineò first.

http://www.codesourcery.com/sgpp/lite/arm/portal/package6496/public/arm-none-eabi/arm-2010q1-188-arm-none-eabi.exe
http://www.codesourcery.com/sgpp/lite/arm/portal/package6496/public/arm-none-eabi/arm-2010q1-188-arm-none-eabi.exe

PI-1X Programming Guide 9

Please go to this web site

https://java.com/en/

After install ñJAVA virtual machineò, you need a plug in file for Eclipse, you can

find it in this web site

http://sourceforge.net/projects/gnuarmeclipse/files/Current%20Releases/0.5.4

/

We need the file ñorg.eclipse.cdt.cross.arm.gnu_0.5.4.201202210114.zipò.

https://java.com/en/
http://sourceforge.net/projects/gnuarmeclipse/files/Current%20Releases/0.5.4/
http://sourceforge.net/projects/gnuarmeclipse/files/Current%20Releases/0.5.4/

PI-1X Programming Guide 10

Now, you can download the final file ñEclipse IDE for C/C++ Developersò.

The website is in

http://www.eclipse.org/downloads/packages/release/Juno/SR1

After these actions, we will start to set Eclipse.

Please unzip this file .

After unzip this file, please double click eclipse.exe.

http://www.eclipse.org/downloads/packages/release/Juno/SR1

PI-1X Programming Guide 11

Then you have to install plug in file for compiler.

First, select Help -> Install New Software.

Second, select ñAddò

Third, select ñArchiveò

PI-1X Programming Guide 12

Fourth, select the plug in file.

Fifth, select OK, and all plug in and Next.

Now, you finish the compiler tools installation.

PI-1X Programming Guide 13

2. Edit Program:

 Developers may use the Application.c file under Source folder in the

PI1-T01.00-000 Directory as the starting file. And you can use void

Application_Main(void) as the start point to edit the program. And also you can

freely create a new source file to proceed structural development.

 For regulations and procedures in the developing procedures, please refer to the

ñDevelopment Noticeò

3. Compiler:

 After finish edit program, you can start to compiler.

First:Open Eclipse -> File -> New -> Makefile Project with Existing Code

Then you will enter to this setting.

PI-1X Programming Guide 14

The make file is in our folder. (SDK\Terminal\build)

Select the project you created, and click right mouse buttom

After build project, you can find a file ñApp.binò in SDK\Terminal\build\bin, This is our

bin file.

4. Update your System:

If your system version is not match this SDK version, please refer to the ñUpgrade

Systemò section.

5. Development Notice:

 void Application_Main (void) is the entry program of Application.c instead of usual

main.c.

 Maximum User Task Stack: About 300K bytes

 Maximum global area and Memory allocation(Total): About 20Mbytes.

 Maximum capacity of the Binary file (App.bin): About 2MBytes

 System storage:

ʂ Drive C ï DDR memory for dynamic access.

ʂ Drive D ï NAND flash.

ʂ Drive E ï SD card.

 The developer can exchange files with PC using the communication tool

PhoenixVoler.

6. Download APP.bin

 Please download your app.bin by PhoenixVoler, and to the terminal path

PI-1X Programming Guide 15

ñD:\PROGRAMò. After download, you can run your application.

7. Simulator(Only for debug in PC site)

Purpose:

To shorten the development time and increase the program stability, a simulation

tool is designed for developer to edit and debug program with ease. With this

simulator, developer will know in advance whether there is any error in the program

code or whether this program meets actual demands before downloading the

program to the collector so that the correction and debugging can be done

immediately. The simulator provides a platform, which can simulate the same

hardware functionality as a real collector, for example buzzer, LED, scanner, key

buttons, memory allocation and LCD display. Developer can identify whether the

program meets the demands through the simulation test.

Developing Environment:

Microsoft Visual C++ 6.0 developing tool needs to be installed into the workstation.

The developing environment will appear like the image on the right.

How to use:

a. Complete the developing environment setup listed above.

b. Execute \SDK\Terminal\Simulator\PIxSimulator.dsw in the directory then you

can open the simulation project file. Under VC++6, execute Build\Set Active

Configuration...,select PI1xSimulator - Win32 Debug, then click OK to complete

the environment setting.

c. Start Simulating:

i. Execute program(Function key:Ctrl+F5)

PI-1X Programming Guide 16

ii. Then a simulator will appear on the desktop

iii. Select ñ1.Run programò ane press ñENT Buttonò to run the program.

d. Debug

i. When running simulation, VC++6 will compile and link all the programs and

generate a DLL file to link with the simulation file in the Execute directory.

When compiling and linking, the error(s) or warning(s) will be displayed on

the VC++6 windows to let user know the error messages.

ii. The developer will need to remove all the errors and warnings to ensure the

syntax accuracy of the program.

iii. The logical errors of the program need to be debugged using VC++6

debugging environment. This debugging environment provides the

functions of line-by-line program execution, variable listing and message

hints.

e. The project file links the source file as figure.

Source file Folder

Application.c \SDK\Terminal\UserProg\ Application.c

DBMS.h \SDK\Terminal\UserProg\ DBMS.h

Define.h \SDK\Terminal\UserProg\ Define.h

LIB_CL.h \SDK\Terminal\UserProg\ LIB_CL.h

.

PI-1X Programming Guide 17

Upgrade System

1. System Requirement:

 Software: PhoenixVoler

 Hardware: PI-1010 / PI-1030 and PC.

 Firmware: Bin file for upgrade.(in Upgrade folder)

2. Upgrade Procedure:

In Force Mode:

 When reset PI-1010 / PI-1030, please power off the terminal, and press combine

key ñ1+3ò (donôt release this combine key), then press power key to power on. After

power on, you can release combine key and enter to Force mode.

 Then connect to PC and wait for communication.

 Force mode is only for firmware upgrade.

 After upgrade in force mode, all of user settings will be reset.

In Supervisor Menu:

 When reset PI-1010 / PI-1030, please power off the terminal, and press combine

key ñ1+3+0ò (donôt release this combine key), then press power key to power on.

After power on, you can release combine key and enter to Supervisor Menu.

PI-1X Programming Guide 18

 And input password ñ00000ò -> Remote Link -> Connect. Then connect to the PC

and wait for communication.

 Only Supervisor Menuôs Remote Link can upgrade firmware.

 Upgrade firmware under Supervisor Menuôs Remote Link, all of user settings will not

be reset.

PI-1X Programming Guide 19

In PhoenixVoler:

 Execute PhoenixVoler and select Tools\F/W Update

.

 Select the FW upgrade file and complete the firmware update.

3. Execute System:

 Restart PI-1010 / PI-1030.

PI-1X Programming Guide 20

Utility & Others

1. AID MAKER

 Select PI-1000 / PI-1010 / PI-1030 in communication mode.

 Double click ñAgentIDTool.exeò and set connection.

 This application will ask the username and password, each of these word for 4~8

characters.

 After set, you can check the AID by ñCheck_AIDò function in your SDK application.

 Please connect in ñRemote Link -> Connectò status.

2. Font

This utility ñSDK Toolò in Font folder can do somethings as follows

 When you need a BMP picture to display, you can make a BMP text by our ñSDK

Toolò. This text file is your BMP file image array, you can copy this array in your code

and compiler that.

 When you need a font array in your source code, you can make the font array by

ñSDK Toolò to make font text.

 When you need a font file for your application, you can make the font file by ñSDK

Toolò, the font generator can help you to make a font file.

3. ScanSetting

This utility can make a file for all scanner settings. You can download this file and use

SDK function ñScannerSetFromFileò to set all scanner settings.

4. ServiceID Maker

 Select PI-1000 / PI-1010 / PI-1030 in communication mode.

 Double click ñServiceIDTool.exeò and set connection.

 This application will ask the Service ID and Project name, each of these word for

4~8 characters.

 Please connect in ñRemote Link -> Connectò status.

5. FileConverter

 For DBMS function.

 Convert Source file to Output file with specified format and field.

 You can see "FileConverter manual.doc" for how to use this utility.

PI-1X Programming Guide 21

6. DataMagic

 For Data magic function.(_scanf_DataMagic, DataMagic_Set, DataMagic_Run)

 You can see "PI1X DataMagic Setup Tool User Guide.doc" for how to use this utility.

 And we have C language sample code in SDK=>Sample code=>Sample 2.

PI-1X Programming Guide 22

SDK Library

SDK Functions list

Function Description

Reader

InitScanner1 Initialize respective scanner port.

Decode Perform barcode decoding.

SleepScanner1 Set scanner module sleep.

HaltScanner1 Stop the scanner port from operating.

TriggerStatus To check the scan key status.

Scanner_Reset Set scanner setting to default.

Scanner_Config_Start To start scanner setting procedure.

Scanner_Config_End To end scanner setting procedure.

SCAN_SendCommand Send scanner(CCD) command to change scanner status.

SCAN_QueryStatus Query the scanner(CCD) current setting.

ScannerSetFromFile Set scanner setting by scanner setting file. This file is made

by utility ñScanSettingò.

Scanner_Version Query the scan module version.

Sim_ScanKey_Press To simulator the ñScanò key press or release.

Scanner_GetType To get scanner type for CCD or 2D.

Buzzer

beeper_status To see whether a beeper sequence is under going or not.

off_beeper Terminate beeper sequence.

on_beeper Assign a beeper sequence to instruct beeper action.

SetBuzzerVol Set the buzzer volume.

GetBuzzerVol Get the buzzer volume.

Calender

DayOfWeek Get the day of the week information.

get_time Get current date and time.

set_time Set new date and time to the calendar chip.

File Manipulation

__access Check for file existence.

append Write a specified number of bytes to bottom (end-of-file

position) of a DAT file.

appendln Write a specified number of bytes to bottom (end-of-file

PI-1X Programming Guide 23

position) of a DAT file.

chsize Extends or truncates a DAT file.

close_file Close a DAT file.

delete_top Remove a specified number of bytes from top

beginning-of-file position) of a DAT file.

delete_topln Remove a null terminated character string from the top

(beginning-of-file position) of a DAT file.

eof Check if file pointer of a DAT file reaches end of file.

filelength Get file length information of a DAT file.

filelist Get file directory information.

lseek_file Move file pointer of a DAT file to a new position.

open_file Open a DAT file and get the file handle of the file for further

processing.

read_file Read a specified number of bytes from a DAT file.

read_error_code Get the value of the global variable fErrorCode.

readln Read a line terminated by a null character ñ\0ò from a DAT

file.

_remove Delete file.

_rename Change file name of an existing file.

tell Get file pointer position of a DAT file.

write_file Write a specified number of bytes to a DAT file.

writeln Write a line terminated by a null character (\0) to a DAT file.

The null character is also written to the file. After writing in,

file position will update.

DiskC_format Format disk C.

DiskD_format Format disk D.

DiskE_format Format disk E.(SD card)

DiskC_totalsize Checking the total space in disk C.

DiskD_totalsize Checking the total space in disk D.

DiskE_totalsize Checking the total space in disk E.(SD card)

DiskC_usedsize Checking the used space in disk C.

DiskD_usedsize Checking the used space in disk D.

DiskE_usedsize Checking the used space in disk E.(SD card)

DiskC_freesize Checking the free space in disk C.

DiskD_freesize Checking the free space in disk D.

DiskE_freesize Checking the free space in disk E.(SD card)

getDirNum Get the folder quantity in designate path.

getFileNum Get the file quantity in designate path.

PI-1X Programming Guide 24

getDirList Get the folder information in designate path.

getFileList Get the file information in designate path.

_fclose Use _fclose to close a file opened earlier for buffered

input/output using _fopen.

_fcloseAll Use _fcloseAll to close all files opened for buffered

input/output with _fopen or tmpfile.

_filelength Use _filelength to dertimine the length of a file in bytes.

_fopen Use _fopen to open a file for buffered input/output

operations.

_fread Use _fread to read a specified number of data items, eachof

a given size, from the current position in a file opened for

buffered input. The current position is updated after the

read.

_fseek Use _fseek to move to a new position in a file opened for

buffered input/output.

_fwrite Use _fwrite to write a specified number of data itmes, each

of a given size, from a buffer to the current position in a file

opened for buffered output. The current position is updated

after the write.

CreateDIR Use CreateDIR can create a directory.

DeleteDIR Use DeleteDIR can delete a directory.

DBMS

Ini_Search Use ñIni_Searchò can initiate the file search function in disk.

Ini_SearchAdv Use ñIni_SearchAdvò can initiate the advance file search

function in disk

Close_Search Close the file search function in Disk C and D.

SearchField Search the designated field.

SearchField_GR Search the designated field; After searching success,

acquiring the record which includes this field.

SearchField_GF Search the designated field; After searching success,

acquiring the appointed field in including this fieldôs record.

SearchMultiField_GF Search the designated field. The fieldôs information include

field string and field number.You can write many fields in this

field buffer. After searching success, acquiring the appointed

field in including this fieldôs record.

SeekRecord Move the index of searching to the appointed record.

GetRecordNum Obtain the figure of all records in the file.

DeleteRecord Delete the appointed record in the file.

PI-1X Programming Guide 25

DeleteLastRecord Delete the last record in the file.

AppendRecord Increase one record on the file end.

WriteField Revise the data of appoint field in appointed field record.

WriteRecord Revise the data of the appointed record.

ReadField Read the data of appointed field in the appointed record.

ReadRecord Read data of the appointed record.

LED

set_led To set the LED indicators

Keypad

clr_kb To clear the keyboard buffer.

dis_alpha Disable alphabet key stroke processing.

en_alpha Enable alphabet key stroke processing.

get_alpha_enable_state Get the status of the alphabet key stroke processing.

set_alpha_mode_state Set the status of the alphabet mode.

get_alpha_mode_state Get the status of the alphabet mode.

set_keypad_BL Set keypad and LCD backlight on/off.

get_keypad_BL Get keypad and LCD backlight on/off status.

set_keypad_BL_Timer Set keypad and LCD backlight timer.

get_keypad_BL_Timer Get keypad and LCD backlight timer.

kbhit Check keybuffer is empty or not.

_getchar Get one key stroke from the keyboard buffer.

GetKeyClick Get current key click status

SetKeyClick To enable / disable the key click sound.

Def_PKey Change progrom key 1 ~ 3(P1 ~ P3) key define.

Def_PKey_MultiInput Change progrom key 1 ~ 3(P1 ~ P3) key define.

FNKey_Reset To reset all of FN-Key setting.

FNKey_GetState To check the FN-Key setting that is custom or default.

FNKey_SetUserDef To set a custom setting for FN-Key.

_scanf Use _scanf to read character strings from the standard input

file and covert the strings to values of C variables according

to specified formats.

_scanf_DefaultStr Use _scanf_DefaultStr to set a default string in input and

read character strings from the standard input file and covert

the strings to values of C variables according to specified

formats.

_scanf_ctrl_ScannerStatus Set scanner on/off when use ñ_scanfò function.

_scanf_ctrl_ScannerSleep Set scanner sleep on/off when use ñ_scanfò function.

_scanf_ctrl_Vibrate Set vibrate on/off when use ñ_scanfò function and scanner

PI-1X Programming Guide 26

status on.

_scanf_ctrl_ScanWithENT Set ENT auto press on/off when use ñ_scanfò function and

scanner status on.

_scanf_ctrl_AlphaKey Set Alpha key function on/off when use ñ_scanfò function.

_scanf_ctrl_AlphaKey_Mode Set alpha mode when use ñ_scanfò function.

_scanf_ctrl_password Set display for general or user define when use ñ_scanfò

function.

_scanf_ctrl_KeypadLock Set keypad lock on/off when use ñ_scanfò function.

_scanf_DataMagic Use _scanf_ DataMagic to read character strings from the

standard input file and covert the strings to values of C

variables according to specified formats. After these actions,

it will convert strings according to ñData Magicò file.

LCD

clr_eol Clear from where the cursor is to the end of the line. The

cursor position is not affected after the operation.

clr_rect Clear a rectangular area on the LCD display. The cursor

position is not affected after the operation.

clr_scr Clear LCD display.

fill_rect Fill a white rectangular area on the LCD display.

reverse_rect To reserve the rectangular area on the LCD display.

Get_Cursor Get current cursor status.

Set_Cursor Turn on or off the cursor of the LCD display.

gotoxy Move cursor to new position.

wherex Get x-coordinate of the cursor location.

wherexy Get x-coordinate and y-coordinate of the cursor location

wherey Get y-coordinate of the cursor location.

lcd_backlit_Setlv Set LCD and keypad backlight level.

lcd_backlit_SetTimer Set LCD and keypad backlight timer.

lcd_backlit_Getlv Get LCD and keypad backlight level.

lcd_backlit_GetTimer Get LCD and keypad backlight timer.

lcd_contrast_Getlv Get LCD contrast level.

lcd_contrast_Setlv Set LCD contrast level.

_printf Use _printf to write character strings and volues of C

variables, formatted in a specified manner, to display

screen.

_putchar Display a character in color black on the LCD display.

_puts Display a string in color black on the LCD display.

show_image_bmp Put a rectangular bitmap to the LCD display.

PI-1X Programming Guide 27

UserFont

DispFont_SetFont Set user font from font file.

DispFont_GetFontInfo Get font type,width and height.

TextBlock

DefineTextBlock Define TextBlock setting.

SetTextBlock Enable the specific TextBlock.

ResetTextBlock Disable the specific TextBlock.

PrintTextBlock Print Text to specific TextBlock.

GetTextBlockCur Get TextBlock current position.

SetTextBlockCur Set specific TextBlock as active TextBlock and set position.

ShowTextBlockCursor Show or hide TextBlock cursor.

SwitchTextBlock Switch TextBlock.

Communication Ports

clear_com Clear receive buffer

close_com To close specified communication port

com_cts Get CTS level

com_eot To see if any COM port transmission in process (End Of

Transmission)

com_overrun See if overrun error occurred

com_rts Set RTS signal

nwrite_com Send a specific number of characters out through RS232

port

open_com Initialize and enable specified RS232 port

read_com Read 1 byte from the RS232 receive buffer

write_com Send a string out through RS232 port

USB_Open Initialize and enable USB port.

USB_Close To close USB port

USB_Read Read specific number of bytes from USB port.

USB_Write Write specific number of bytes to the PC site.

USB_Flush USB reveive and write buffer reset.

Remote

RemoteLink Use RemoteLink to call the transmission function for user to

upload or download files.

RemoteLink_RealTime Use RemoteLink_RealTime can transfer file in any state.

When use this function, file transfer is disable.

RemotePort_SelectIF Select RemoteLink interface.

RemotePort_GetSelectIF Get RemoteLink interface.

RemotePort_SetCOM Set COM port baudrate for RemoteLink.

PI-1X Programming Guide 28

RemotePort_GetCOM Get COM port baudrate for RemoteLink.

RemotePort_SetBT Set Bluetooth function for RemoteLink.

RemotePort_GetBT Get Bluetooth function for RemoteLink.

RemotePort_SetWIFI Set WIFI function for RemoteLink.

RemotePort_GetWIFI Get WIFI function for RemoteLink.

RemotePort_SendMsg Send message data or Scanner(HID) to PC.

RemotePort_SendBarcode Send data(Barcode or other input) to PC.

RemotePort_SendBarcode_Sta

tus

Return data send temp buffer status.

RemotePort_SendBarcode_Clr Clear all data send.

RemotePort_ReadBarcode Read data from read temp buffer..

RemotePort_ReadBarcode_Sta

tus

Return data read temp buffer status.

RemotePort_ReadBarcode_Clr Clear all data read.

RemotePort_SendMsg_1 Send message to PC.

RemotePort_SendMsg_Status_

1

Return message send temp buffer status.

RemotePort_ReadMsg_1 Read message from PC send.

RemotePort_FileTran_Status When using RemoteLink_RealTime, to get the transfer

status.

RemotePort_FileTran_Success When using RemoteLink_RealTime, to get the

upload/download quantity of files.

RemotePort_FileTran_StatusClr Clear all the file transfer information.

RemotePort_FileTran_Info When using RemoteLink_RealTime, to get the file transfer

information.

LinkingPort

LinkingPort_Open Start a LinkingPort.

LinkingPort_Close Stop a LinkingPort.

LinkingPort_SetSelectIF Set LinkingPort interface select setting.

LinkingPort_GetSelectIF Get LinkingPort interface select setting.

LinkingPort_SetCOM Set LinkingPort COM baudrate setting.

LinkingPort_GetCOM Get LinkingPort COM baudrate setting.

LinkingPort_SetBT Set LinkingPort Bluetooth function setting.

LinkingPort_GetBT Get LinkingPort Bluetooth function setting.

LinkingPort_SetWIFI Set LinkingPort WIFI function setting.

LinkingPort_GetWIFI Get LinkingPort WIFI function setting.

LinkingPort_Write Write data to LinkingPort.

LinkingPort_Read Read data from LinkingPort.

PI-1X Programming Guide 29

LinkingPort_Write_n Write data to LinkingPort in BT/WIFI independent task.

LinkingPort_Read_n Read data from LinkingPort in BT/WIFI independent task.

System

SysSuspend Shut down the system.

SysDelay Set system delay time.

SetPowerOnState Set power on status

GetPowerOnState Get power on status

SetAutoPWOff Set auto power off timer.

GetAutoPWOff Get auto power off timer.

SetStatusBAR Set statusbar display/no display.

GetStatausBAR Get statusbar display status.

SN_Get To get the SN.

BIOS_SetDefault Set BIOS setting default.

BIOS_Setting_SaveToKernel Save BIOS settings to kernel.

Check_AID Check the agency ID correct or not.

GetKernelVer To get the Kernel version.

SetDCIn_AlwaysOn To set power auto off or not status when DC in.

GetDCIn_AlwaysOn To get power auto off or not status when DC in.

GetBatt_Level To get the Battery level.

GetWIFI_RSSI To get the wifi RSSI value.

Memory

Tfree Use the Tfree to release an allocated storage block to the

pool of free memory.

Tmalloc Use Tmalloc to allocate memory for an array of a given

number of bytes. You can use ñFreeHeapSizeò to check free

size for this function

TotalHeapSize Checking the total heap size.

UsedHeapSize Checking the used heap size.

FreeHeapSize Checking the free heap size.

Vibrate

on_vibrator Use on_vibrator to set vibrator on.

off_vibrator Use off_vibrator to set vibrator off.

set_vibrator_timer Use set_vibrator_timer to set vibrator on timer.

get_vibrator_timer Use get_vibrator_timer to get vibrator on. timer

Other

prc_menu Create a menu-driven interface.

prc_menu_scroll Create a menu-driven interface with scroll function.

prc_menu_Set_SelectWithEnt Set function ñprc_menuò and ñprc_menu_scrollò ENT key

PI-1X Programming Guide 30

status when use number key to select menu.

prc_menu_Get_SelectWithEnt Get function ñprc_menuò and ñprc_menu_scrollò ENT key

status when use number key to select menu.

prc_menu_GetMenuSelect After use function ñprc_menuò and ñprc_menu_scrollò, it can

get what option is selected in these functions.

DataMagic_Set Set a Data Magic file for function ñ_scanf_DataMagicò or

ñDataMagic_Runò to use.

DataMagic_Run Convert a string by Data Magic file setting.

Simulator (Only for PC Simulator)

CopyFileToTerminal Use BackupDataFiletoPC to copy data file to C:\Data

directory in PC.

BackupDataFiletoPC Use BackupDataFiletoPCA to copy data file to any disc in

PC.

Data Conversion

__itoa Use __itoa to convert an integer value to a null-terminated

character string.

__ltoa Use __ltoa to convert a long integer value to a

null-terminated character string.

__ultoa Use __ultoa to convert an unsigned long integer value to a

character string.

RF

RFHost_Open Start RF module.

RFHost_Close Stop RF module.

RFHost_CallTagID Call the tag.

RFHost_GetVersion Get RF module firmware version.

PI-1X Programming Guide 31

Reader

InitScanner1

Purpose Initialize respective scanner port.

Syntax void InitScanner1(void);

Example call InitScanner1();

Includes #include ñLIB_CL.h ò

Description Use InitScanner1 function to initialize scanner port. The scanner port

won't work unless it is initialized.

Returns None

Decode

Purpose Perform barcode decoding.

Syntax int Decode(void);

Example call while(1){if(Decode()) break;}

Includes #include ñLIB_CL.h ò

Description Once the scanner port is initialized (by use of InitScanner1 function), call

this Decode function to perform barcode decoding. This function should

be called constantly in user's program loops when barcode decoding is

required. If the barcode decoding is not required for a long period of

time, it is

recommended that the scanner port should be stopped by use of the

HaltScanner1 function. If the Decode function decodes successfully, the

decoded data will be placed in the string variable CodeBuf with a string

terminating character appended.

And the code length will be saved in ñCodeLenò, the code name type will

be saved in ñCodeNameò, the code ID will be saved in ñCodeIDò, and the

code type will be saved in ñCodeTypeò.

And we have the other buffer for save all barcode information in

ñFullCodeBufò, the format of ñFullCodeBufò as follows:

Code

name

Pream

ble

ID* Code

Length

Barcode

data

ID* Posta

mble

Termi

nator

The ID position depends on ñCode ID positionò setting.

Returns 0 : Fail̢

Other value : Barcode length̢

SleepScanner1

Purpose Set scanner module sleep.

Syntax void SleepScanner1(BOOL bStatus);

PI-1X Programming Guide 32

Example call InitScanner1();

while(1)

{

 if (Decode())

 SleepScanner1(TRUE);

 while(_getchar()==0);

 SleepScanner1(FALSE);

}

Includes #include ñLIB_CL.h ò

Description Use SleepScanner1 function to set scanner in sleep mode. You have not

to initial scanner again, and it would be scan again.

Returns None

HaltScanner1

Purpose Stop the scanner port from operating.

Syntax void HaltScanner1(void);

Example call HaltScanner1();

Includes #include ñLIB_CL.h ò

Description Use HaltScanner1 function to stop scanner port from operating. To

restart a halted scanner port, the initialization function, InitScanner1,

must be called. It is recommended that the scanner port should be

stopped if the barcode decoding is not required for a long period of time.

Returns none

TriggerStatus

Purpose To check the scan key status.

Syntax int TriggerStatus(void);

Example call if (TriggerStatus())

 _printf(ñScan key pressed!ò);

Includes #include ñLIB_CL.h ò

Description This function can check the scan key status, if pressed scan key, this

function will return 1, else will return 0.

Returns 0:Scan key is not pressed.

1:Scan key is pressed.

Scanner_Reset

Purpose Set scanner setting to default.

Syntax BOOL Scanner_Reset(void)

Example call If (Scanner_Reset())

_printf (ñScan module reset OK!ò);

Includes #include ñLIB_CL.h ò

PI-1X Programming Guide 33

Description This function can reset scan module,if reset OK,this function will return

1,else will return 0.

Returns 0:Reset fail.

1:Reset OK.

Scanner_Config_Start

Purpose To start scanner setting procedure.

Syntax void Scanner_Config_Start(void);

Example call Scanner_Config_Start();

Includes #include ñLIB_CL.h ò

Description This function can starting scanner setting procedure.

Returns None

Scanner_Config_End

Purpose To end scanner setting procedure.

Syntax void Scanner_Config_End(void);

Example call Scanner_Config_End();

Includes #include ñLIB_CL.h ò

Description This function can ending scanner setting procedure.

Returns None

SCAN_SendCommand

Purpose Send scanner(CCD/2D) command to change scanner status.

Syntax BOOL SCAN_SendCommand(int Command1,int Command2,char

*pValue);

Example call char ssValue = 0;

If(SCAN_SendCommand(6,7,&ssValue))

_printf (ñSetup complete!ò);

Includes #include ñLIB_CL.h ò

Description This function can send command to set scanner status.

You can see ñAppendix 1ò to know about the command setting.

Returns 0:Send fail.

1:Send OK.

SCAN_QueryStatus

Purpose Query the scanner(CCD/2D) current setting.

Syntax BOOL SCAN_QueryStatus(int Command1,int Command2,char

*pReturn);

Example call char ssReturn = 0;

if(SCAN_QueryStatus (6,7, &ssReturn))

_printf (ñQuery OK!ò);

Includes #include ñLIB_CL.h ò

PI-1X Programming Guide 34

Description This function can query scanner setting.

You can see ñAppendix 1ò to know about the command setting.

Returns 0:Query fail.

1: Query OK.

ScannerSetFromFile

Purpose Set scanner setting by scanner setting file. This file is made by utility

ñScanSettingò.

Syntax BOOL ScannerSetFromFile(char *pssFilePath);

Example call If(ScannerSetFromFile (ñC:\\data\\scan.axsò))

_printf(ñSetting OK!ò);

Includes #include ñLIB_CL.h ò

Description You can set scanner from ñscanner setting fileò by this function. This

function can help you set scanner setting easier.

Returns 0:Load fail.

1: Load OK.

Scanner_Version

Purpose Query the scan module version.

Syntax BOOL Scanner_Version(char* Returnbuf);

Example call If(Scanner_Version (Returnbuf))

_printf (ñQuery module version OK!ò);

Includes #include ñLIB_CL.h ò

Description This function can query the scan module version.

Returns 0:Query module fail.

1: Query module OK.

Sim_ScanKey_Press

Purpose To simulator the ñScanò key press or release.

Syntax void Sim_ScanKey_Press(BOOL bStatus)

Example call Sim_ScanKey_Press(TRUE);//Set the scan key pressed.

Sim_ScanKey_Press(FALSE);//Set the scan key released.

Includes #include ñLIB_CL.h ò

Description This function can simulator the scan key status for pressed or released.

Returns None

Scanner_GetType

Purpose To get scanner type for CCD or 2D.

Syntax int Scanner_GetType(void);

Example call int i;

i = Scanner_GetType();

Includes #include ñLIB_CL.h ò

PI-1X Programming Guide 35

Description This function can get scanner type for user to check..

Returns 0:CCD

2:2D

PI-1X Programming Guide 36

Buzzer

beeper_status

Purpose To see whether a beeper sequence is under going or not.

Syntax int beeper_status(void);

Example call while(beeper_status());

Includes #include ñLIB_CL.h ò

Description The beeper_status function checks if there is a beeper sequence in

progress.

Returns 1 if beeper sequence still in progress, 0 otherwise

off_beeper

Purpose Terminate beeper sequence.

Syntax void off_beeper(void);

Example call off_beeper();

Includes #include ñLIB_CL.h ò

Description The off_beeper function terminates beeper sequence immediately if there

is a beeper sequence in progress.

Returns none

on_beeper

Purpose Assign a beeper sequence to instruct beeper action.

Syntax void on_beeper(int *sequence);

Example call int beep_twice[50] = {30,10,0,10,30,10,0,0};

on_beeper(beep_twice);

Includes #include ñLIB_CL.h ò

Description A beep frequency is an integer used to specify the frequency (tone) when

the beeper activates. The actual frequency that the beeper activates is

not the value specified to the beep frequency. It is calculated by the

following formula. For example, an array ñint beep[4] = {30,10,0,0};ò, first

ñ30ò is for beep frequency, second ñ10ò is for beep time (10 * 0.01s), and

third ñ0ò, fourth ñ0ò is for beep end.

Beep Frequency = 76000 / Actual Frequency Desired

For instance, to get a frequency of 2000Hz, the value of beep frequency

should be 38. If no sound is desired (pause), the beep frequency should

beset to 0. A beep with frequency 0 does not terminate the beeper

sequence. Suitable frequency for the beeper ranges from 1 to 2700Hz,

where peak

at 2000Hz.

PI-1X Programming Guide 37

Returns The on_beeper function has no return value.

SetBuzzerVol

Purpose Set the buzzer volume.

Syntax void SetBuzzerVol(int slVol);

Example call SetBuzzerVol(0);//Buzzer close.

Includes #include ñLIB_CL.h ò

Description The SetBuzzerVol function can set the buzzer volume.

 slVol Buzzer vloume

0 close

1 Low

2 Medium

3 High

Returns None.

GetBuzzerVol

Purpose Get the buzzer volume.

Syntax int GetBuzzerVol(void);

Example call Int i;

i = GetBuzzerVol();

Includes #include ñLIB_CL.h ò

Description The GetBuzzerVol function can get the buzzer volume.

Returns

Returns Buzzer vloume

0 close

1 Low

2 Medium

3 High

PI-1X Programming Guide 38

Calender

DayOfWeek

Purpose Get the day of the week information.

Syntax int DayOfWeek(void);

Example call day=DayOfWeek();

Includes #include ñLIB_CL.h ò

Description The DayOfWeek function returns the day of week information based on

current date.

Returns The DayOfWeek function returns an integer indicating the day of week

information. A value of 1 to 6 represents Monday to Saturday accordingly.

And a value of 7 indicates Sunday.

get_time

Purpose Get current date and time

Syntax int get_time(char *cur_time);

Example call char system_time[16];

get_time(system_time);

Includes #include ñLIB_CL.h ò

Description The get_time function reads current date and time from the calendar

chip and copies them to a character array specified in the argument

cur_time. The character array cur_time allocated must have a

minimum of 15 bytes to accommodate the date, time, and the string

terminator. The format of the system date and time is listed below.

"YYYYMMDDhhmmss"

YYYY year, 4 digits

MM month, 2 digits

DD day, 2 digits

hh hour, 2 digits

mm minute, 2 digits

ss second, 2 digits

Returns Normally the get_time function always returns an integer value of 0. If the

calendar chip malfunctions, the get_time function will then return 1 to

indicate error.

set_time

Purpose Set new date and time to the calendar chip.

PI-1X Programming Guide 39

Syntax int set_time(char *new_time);

Example call set_time(ñ20030401223035ò);

Includes #include ñLIB_CL.h ò

Description The set_time function set a new system date and time specified in the

argument new_time to the calendar chip. The character string

new_time must have the following format,

"YYYYMMDDhhmmss"

YYYY year, 4 digits

MM month, 2 digits, 1-12

DD day, 2 digits, 1-31

hh hour, 2 digits, 0-23

mm minute, 2 digits, 0-59

ss second, 2 digits, 0-59

Ps. When it execute in simulator, the time will not change.

Returns Normally the set_time function always returns an integer value of 1. If the

calendar chip malfunctions, the set_time function will then return 0 to 0

error. Also, if the format is illegal (e.g. set hour to 25), the operation is

simply denied and the time is not changed.

PI-1X Programming Guide 40

File Manipulation

 Unsupport file name : If these symbol ñ"*+,:;<=>\?[]|ò in filename, we cannot

support these file for open or transfer.

__access

Purpose Check for file existence.

Syntax int __access(char *filename);

Example call if(__access(ñC:\\data\\store.datò) _puts(ñstore.dat exist!!ò);

Includes #include ñLIB_CL.h ò

Description Check if the file specified by filename.

Returns If the file specified by filename exist, access returns an integer

value of 1, 0 otherwise. In case of error, access will return an

integer value of -1 and an error code is set to the global variable

fErrorCode to indicate the error condition encountered. Possible

error codes and theirinterpretation are listed below.

fErrorCode 1: filename is a NULL string.

append

Purpose Write a specified number of bytes to bottom (end-of-file position)

of a DAT file.

Syntax int append(int fd, char *buffer, int count);

Example call append(fd,òABCDEò,5);

Includes #include ñLIB_CL.h ò

Description The append function writes the number of bytes specified in the

argument count from the character array buffer to the bottom of a

DAT file whose file handle is fd. Writing of data starts at the

end-of-file position of the file, and the file pointer position is

unaffected by the operation. The append function will

automatically extend the file size of the file to hold the data

written.

Returns The append function returns the number of bytes actually written

to the file. In case of error, append returns an integer value of -1

and an error code is set to the global variable fErrorCode to

indicate the error condition encountered. Possible error codes and

their interpretation are listed below.

fErrorCode 2 File specified by fd does not exist.

8 File not opened

9 The value of count is negative.

PI-1X Programming Guide 41

10 No more free file space for file extension.

appendln

Purpose Write a null terminated character string to the bottom

(end-of-file position) of a DAT file.

Syntax int appendln(int fd, char *buffer);

Example call appendln(fd, data_buffer);

Includes #include ñLIB_CL.h ò

Description The appendln function writes a null terminated character string

from the character array buffer to a DAT file whose file handle is

fd. Characters are written to the file until a null character (\0) is

encountered. The null character is also written to the file. Writing

of data starts at the end-of-file position. The file pointer position

is unaffected by the operation. The appendln function will

automatically extend the file size of the file to hold the data

written.

Returns The appendln function returns the number of bytes actually

written to the file (includes the null character). In case of error,

appendln returns an integer value of -1 and an error code is set to

the global variable fErrorCode to indicate the error condition

encountered. Possible error codes and their interpretation

are listed below.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

10:No more free file space for file extension.

11:Can not find string treminator in buf.

chsize

Purpose Extends or truncates a DAT file.

Syntax int chsize(int fd, long new_size);

Example call if (chsize(fd, 0)) _puts(ñfile truncated!\nò);

Includes #include ñLIB_CL.h ò

Description The chsize function truncates or extends the file specified by the

argument fd to match the new file length in bytes given in the

argument new_size. If the file is truncated, all data beyond the

new file size will be lost. If the file is extended, no initial value is

filled to the newly extended area.

Returns If chsize successfully changes the file size of the specified DAT

file, it returns an integer value of 1. In case of error, chsize will

return an integer value of 0 and an error code is set to the global

PI-1X Programming Guide 42

variable fErrorCode to indicate the error condition encountered.

Possible error codes and their interpretation are listed below.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

10:No more free file space for file extension.

close_file

Purpose Close a DAT file.

Syntax int close(int fd);

Example call If (close(fd)) _puts(ñfile closed!\nò);

Includes #include ñLIB_CL.h ò

Description Close a previously opened or created DAT file whose file handle

is fd.

Returns close returns an integer value of 1 to indicate success. In case of

error, close returns an integer value of 0 and an error code is set to

the global variable fErrorCode to indicate the error condition

encountered. Possible error codes and their interpretation are

listed below.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

delete_top

Purpose Remove a specified number of bytes from top (beginning-of-file

position) of a DAT file.

Syntax int delete_top(int fd, int count);

Example call delete_top(fd,100);

Includes #include ñLIB_CL.h ò

Description The delete_top function removes the number of bytes specified in

the argument count from a DAT file whose file handle is fd.

Removing of data starts at the beginning-of-file position of the

file. The file pointer position is adjusted accordingly by the

operation. For instance, if initially the file pointer points to the

tenth character, after removing 8 character from the file, the new

file pointer will points to the second character of the file.

The delete_top function will resize the file size automatically.

Returns The delete_top function returns the number of bytes actually

removed from the file. In case of error, delete_top returns an

integer value of -1 and an error code is set to the global variable

fErrorCode to indicate the error condition encountered. Possible

error codes and their interpretation.

PI-1X Programming Guide 43

fErrorCode 2:File specified by fd does not exist.

8:File not opened

9:The value of count is negative.

10:No more free file space for file extension.

delete_topln

Purpose Remove a null terminated character string from the top

(beginning-of-file position) of a DAT file.

Syntax int delete_topln(int fd);

Example call delete_topln (fd);

Includes #include ñLIB_CL.h ò

Description The delete_topln function removes a line terminated by a null

character file until a null character (\0) or end-of-file is

encountered. The null character is also removed from the file.

Removing of data starts at the top (beginning-of-file position) of

the file, and the file pointer position is adjusted accordingly. The

delete_topln function will resize the file size automatically.

Returns The delete_topln function returns the number of bytes actually

removed from the file (includes the null character). In case of

error, delete_topln returns an integer value of -1 and an error code

is set to the global variable fErrorCode to indicate the error

condition encountered. Possible error codes and their

interpretation are listed below.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

9:The value of count is negative.

10:No more free file space for file extension.

eof

Purpose Check if file pointer of a DAT file reaches end of file.

Syntax int eof(int fd);

Example call if (eof(fd)) _puts(ñend of file reached!\nò);

Includes #include ñLIB_CL.h ò

Description The eof function checks if the file pointer of the DAT file whose

file handle is specified in the argument fd, points to end-of-file.

Returns The eof function returns an integer value of 1 to indicate an

end-of-file and a 0 when not. In case of error, eof returns an

integer value of -1 and an error code is set to the global variable

fErrorCode to indicate the error condition encountered.

fErrorCode 2:File specified by fd does not exist.

PI-1X Programming Guide 44

8:File not opened

filelength

Purpose Get file length information of a DAT file.

Syntax long filelength(int fd);

Example call datasize = filelength(fd);

Includes #include ñLIB_CL.h ò

Description The filelength function returns the size in number of bytes of the

DAT file whose file handle is specified in the argument fd.

Returns The long integer value returned by filelength is the size of the

DAT file in number of bytes. In case of error, filelength returns a

long value of -1 and an error code is set to the global variable

fErrorCode to indicate the error condition encountered. Possible

error codes and their interpretation.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

filelist

Purpose Get file directory information.

Syntax int filelist(char * file_list);

Example call total_file = filelist(file_list);

Includes #include ñLIB_CL.h ò

Description The filelist function copies the file name, file type, and file size

information (separated by a blank character) of all files in

existence into a character array specified in the argument dir.

When char * file_list = NULL it will pass the length that the file

string needs back.

For example, if there are two files in ñC:\Dataò, the filename are

StoreIn.dat and StoreOut, and their filesize are 100bytes and 150bytes,

the data in the return buffer is ñC:\Data\StoreIn.dat dat 100

C:\Data\StoreOut.dat dat 150ò

Returns When ñchar*file_listò is NULL, it will pass the size of memory

back.

When ñchar*file_listò is not NULL, it will pass the quantity of file

back.

fErrorCode None

lseek_file

Purpose Move file pointer of a DAT file to a new position.

Syntax long lseek(int fd, long offset, int origin);

Example call lseek (fd, 512, 0);

PI-1X Programming Guide 45

Includes #include ñLIB_CL.h ò

Description The lseek function moves the file pointer of a DAT file whose

file handle is specified in the argument fd to a new position

within the file. The new position is specified with an offset byte

address to a specific origin. The offset byte address is specified

in the argument offset which is a long integer. There are 3

possible values for the argument origin.

The values and their interpretations are listed below.

Value of origin Interpretation

1 beginning of file

0 current file pointer position

-1 end of file

Returns When successful, lseek returns the new byte offset address of the

file pointer from the beginning of file. In case of error, lseek

returns a long value of -1L and an error code is set to the global

variable fErrorCode to indicate the error condition encountered.

Possible error codes and their interpretation are listed below.

fErrorCode 2:File specified by fd does not exist.

8:File not opened

9:Illegal offset value.

10:Illegal origin value.

15:New position is beyond end-of-file.

open_file

Purpose Open a DAT file and get the file handle of the file for further

processing.

Syntax int open(char *filename);

Example call if (fd = open(ñC:\\data\\store.datò)>0)

_puts(ñstore.dat opened!ò);

Includes #include ñLIB_CL.h ò

Description The open function opens a DAT file specified by filename and

gets the file handle of the file. A file handle is a positive integer

(excludes 0) used to identify the file for subsequent file

manipulations on the file. If the file specified by filename does

not exist, it will be created first. If filename exceeds 8 characters,

it will be truncated to 8 characters long. After the file is opened,

the file pointer points to the beginning

of file.

PI-1X Programming Guide 46

Returns If open successfully opens the file, it returns the file handle of the

file being opened. In case of error, open will return an integer value of

-1 and an error code is set to the global variable

fErrorCode to indicate the error condition encountered. Possible

error codes and their interpretation are listed below.

fErrorCode 1:filename is a NULL string.

6:Can't create file. Because the maximum number of files allowed in

the system is exceeded.

read_file

Purpose Read a specified number of bytes from a DAT file.

Syntax int read_file(int fd, char *buffer, unsigned count);

Example call if ((bytes_read = read_file(fd,buffer,50)) = = -1)

_puts(ñread error!ò);

Includes #include ñLIB_CL.h ò

Description The read function copies the number of bytes specified in the

argument count from the DAT file whose file handle is fd to the

array of characters buffer. Reading starts at the current position of

the file pointer, which is incremented accordingly when the

operation is completed.

Returns The read function returns the number of bytes actually read from

the file. In case of error, read returns an integer value of -1 and an

error code is set to the global variable fErrorCode to indicate the

error condition encountered. Possible error codes and their

interpretation are listed below.

fErrorCode 2:File handle is NULL.

7:fd is not a file handle of a previously opened file.

read_error_code

Purpose Get the value of the global variable fErrorCode.

Syntax int read_error_code();

Example call if (read_error_code() = = 2) _puts(ñFile not exist!ò);

Includes #include ñLIB_CL.h ò

Description The read_error_code function gets the value of the global variable

fErrorCode and returns the value to the calling program. The

programmer can use this function to get the error code of the file

manipulation routine previously called. However, the global

variable fErrorCode can be directly accessed without making a

call to this function.

Returns The read_error_code function returns the value of the global

PI-1X Programming Guide 47

variable fErrorCode.

fErrorCode None

readln

Purpose Read a line terminated by a null character ñ\0ò from a DAT file.

Syntax int readln(int fd, char *buffer, unsigned max_count);

Example call readln(fd, buffer, 50);

Includes #include ñLIB_CL.h ò

Description The readln function reads a line from the DAT file whose file

handle is fd and stores the characters in the character array buffer.

Characters are read until end-of-file encountered, a null character

(\0) encountered, or the total number of characters read equals the

number specified in max_count. The readln function then returns

the number of bytes actually read from the file. The null character

(\0) is also counted if read. If the readln function completes its

operation not because a null character is read, there will be no null

character stored in buffer. Reading starts at the current position of

the file pointer, which is incremented accordingly when the

operation is completed.

Returns The readln function returns the number of bytes actually read

from the file (includes the null character if read). In case of error,

readln returns an integer value of -1 and an error code is set to the

global variable fErrorCode to indicate the error condition

encountered. Possible error codes and their interpretation are

listed below.

fErrorCode 2:File handle is NULL.

7:fd is not a file handle of a previously opened file.

_remove

Purpose Delete file.

Syntax int _remove(char *filename);

Example call if (_remove(C:\\data\\store.dat) _puts(ñstore.dat deletedò);

Includes #include ñLIB_CL.h ò

Description Delete the file specified by filename. If filename exceeds 8

characters, it will be truncated to 8 characters long. If the file to be

deleted is a DBF file, the DBF file and all the index (key)

files associated to it will be deleted altogether.

Returns If remove deletes the file successfully, it returns an integer value

of 1. In case of error, remove will return an integer value of 0 and

an error code is set to the global variable fErrorCode to indicate

PI-1X Programming Guide 48

the error condition encountered. Possible error codes and their

interpretations are listed below.

fErrorCode 1:filename is a NULL string.

2:File specified by filename does not exist.

6:File is using.

_rename

Purpose Change file name of an existing file.

Syntax int _rename(char *old_filename, char *new_filename);

Example call if (_rename(ñC:\\data\\store.datò,ò C:\\data\\text.datò)

_puts(ñstore.dat renamedò);

Includes #include ñLIB_CL.h ò

Description Change the file name of the file specified by old_filename to

new_filename. But the route does not change.

Returns If rename successfully changes the file name, it returns an integer

value of 1. In case of error, rename will return an integer value of

0, and an error code is set to the global variable fErrorCode to

indicate the error condition encountered. Possible error codes and

their interpretation are listed below.

fErrorCode 1:Either old_filename or new_filename is a NULL string.

2:File specified by old_filename does not exist.

3:A file with file name new_filename already exists.

4:File path is error

5:Filename is too long.

6:File is using.

tell

Purpose Get file pointer position of a DAT file.

Syntax long tell(int fd);

Example call current_position = tell(fd);

Includes #include ñLIB_CL.h ò

Description The tell function returns the current file pointer position of the

DAT file whose file handle is specified in the argument fd. The

file pointer position is expressed in number of bytes from the

beginning of file. For instance, if the file pointer points to the

beginning of file, the file pointer position will be 0.

Returns The long integer value returned by tell is the current file pointer

position in file. In case of error, tell returns a long value of -1 and

an error code is set to the global variable fErrorCode to indicate

the error condition encountered. Possible error codes and their

PI-1X Programming Guide 49

interpretation are listed below.

fErrorCode 2:File handle is NULL.

7:fd is not a file handle of a previously opened file.

write_file

Purpose Write a specified number of bytes to a DAT file.

Syntax int write_file(int fd, char *buffer, unsigned count);

Example call Write_file(fd, data_buffer,100);

Includes #include ñLIB_CL.h ò

Description The write function writes the number of bytes specified in the

argument count from the character array buffer to a DAT file

whose file handle is fd. Writing of data starts at the current

position of the file pointer, which is incremented accordingly

when the operation is completed.

If the end-of- file condition is encountered during the operation,

the file will be extended automatically to complete the operation.

Returns The write function returns the number of bytes actually written to

the file. In case of error, write returns an integer value of -1 and

an error code is set to the global variable fErrorCode to indicate

the error condition encountered. Possible error codes and their

interpretation are listed below.

fErrorCode 2:File handle is NULL.

7:fd is not a file handle of a previously opened file.

10:No more free file space for file extension.

writeln

Purpose Write a line terminated by a null character (\0) to a DAT file.

The null character is also written to the file. After writing in, file

position will update.

Syntax int writeln(int fd, char *buffer);

Example call writeln(fd, data_buffer);

Includes #include ñLIB_CL.h ò

Description The writeln function writes a line terminated by a null character

from the character array buffer to a DAT file whose file handle is

fd. Characters are written to the file until a null character (\0) is

encountered. The null character is also written to the file. Writing

of data starts at the current position of the file pointer, which is

incremented accordingly when the operation is completed. If the

end-of-file condition is encountered during the operation, the file

will be extended automatically to complete the operation.

PI-1X Programming Guide 50

Returns The writeln function returns the number of bytes actually written

to the file (includes the null character). In case of error, writeln

returns an integer value of -1 and an error code is set to the global

variable fErrorCode to indicate the error condition encountered.

Possible error codes and their interpretation are listed below.

fErrorCode 2:File handle is NULL.

7:fd is not a file handle of a previously opened file.

9:no null character found in buffer

10:No more free file space for file extension.

DiskC_format

Purpose Format disk C.

Syntax int DiskC_format(void);

Example call DiskC_format ();

Includes #include ñLIB_CL.h ò

Description The DiskC_format function formats disk C.

Returns 0 : Format false̢

1 : Format OK̢

fErrorCode None

DiskD_format

Purpose Format disk D.

Syntax int DiskD_format (void);

Example call DiskD_format ();

Includes #include ñLIB_CL.h ò

Description The DiskD_format function formats disk D.

Returns 0 : Format false̢

1 : Format OK̢

fErrorCode None

DiskE_format

Purpose Format disk E.(SD card)

Syntax int DiskE_format (void);

Example call DiskE_format ();

Includes #include ñLIB_CL.h ò

Description The DiskE_format function formats disk E.

Returns 0 : Format false̢

1 : Format OK̢

fErrorCode None

DiskC_totalsize

Purpose Checking the total space in disk C.

PI-1X Programming Guide 51

Syntax unsigned int DiskC_totalsize (void);

Example call DiskC_totalsize ();

Includes #include ñLIB_CL.h ò

Description The DicskC_totalsize function returns the used space in disk C.

Returns 0xffffffff : Disk C unformatted.

Others : The total space in disk C.(KBytes)

fErrorCode None

DiskD_totalsize

Purpose Checking the total space in disk D.

Syntax unsigned int DiskD_ totalsize (void);

Example call DiskD_totalsize ();

Includes #include ñLIB_CL.h ò

Description The DicskD_totalsize function returns the total space in disk D.

Returns 0xffffffff : Disk D unformatted.

Others : The total space in disk D.(KBytes)

fErrorCode None

DiskE_totalsize

Purpose Checking the total space in disk E.(SD card)

Syntax unsigned int DiskE_ totalsize (void);

Example call DiskE _totalsize ();

Includes #include ñLIB_CL.h ò

Description The DiskE _totalsize function returns the total space in disk E.

Returns 0xffffffff : Disk E unformatted.

Others : The total space in disk E.(KBytes)

fErrorCode None

DiskC_usedsize

Purpose Checking the used space in disk C.

Syntax unsigned int DiskC_usedsize (void);

Example call DiskC_usedsize ();

Includes #include ñLIB_CL.h ò

Description The DicskC_usedsize function returns the used space in disk C.

Returns 0xffffffff : Disk C unformatted.

Others : The used space in disk C.(KBytes)

fErrorCode None

DiskD_usedsize

Purpose Checking the used space in disk D.

Syntax unsigned int DiskD_usedsize (void);

Example call DiskD_usedsize ();

PI-1X Programming Guide 52

Includes #include ñLIB_CL.h ò

Description The DicskD_usedsize function returns the used space in disk D.

Returns 0xffffffff : Disk D unformatted.

Others : The used space in disk D.(KBytes)

fErrorCode None

DiskE_usedsize

Purpose Checking the used space in disk E.(SD card)

Syntax unsigned int DiskE_usedsize (void);

Example call DiskE _usedsize ();

Includes #include ñLIB_CL.h ò

Description The DiskE _usedsize function returns the used space in disk E.

Returns 0xffffffff : Disk E unformatted.

Others : The used space in disk E.(KBytes)

fErrorCode None

DicskC_freesize

Purpose Checking the free space in disk C.

Syntax unsigned int DiskC_freesize (void);

Example call DiskC_freesize();

Includes #include ñLIB_CL.h ò

Description The DicskC_freesize function returns the free space in disk C.

Returns 0xffffffff : Disk C unformatted.

Others : The free space in disk C.(KBytes)

fErrorCode None

DicskD_freesize

Purpose Checking the free space in disk D.

Syntax unsigned int DiskD_freesize (void);

Example call DiskD_freesize();

Includes #include ñLIB_CL.h ò

Description The DicskD_freesize function returns the free space in disk D.

Returns 0xffffffff : Disk D unformatted.

Others : The free space in disk D.(KBytes)

fErrorCode None

DicskE_freesize

Purpose Checking the free space in disk E.(SD card)

Syntax unsigned int DiskE_freesize (void);

Example call DiskE _freesize();

Includes #include ñLIB_CL.h ò

Description The DiskE _freesize function returns the free space in disk E.

PI-1X Programming Guide 53

Returns 0xffffffff : Disk E unformatted.

Others : The free space in disk E.(KBytes)

fErrorCode None

getDirNum

Purpose Get the folder quantity in designate path.

Syntax int getDirNum(char *pssPath);

Example call int Dir_Num;

Dir_Num = getDirNum(ñC:\\ò);

Includes #include ñLIB_CL.h ò

Description The getDirNum function can get the folder quantity in designate path.

Returns -1 : path error.

-2 : disk unformat.

upward 0 : folder quantity.

fErrorCode None

getFileNum

Purpose Get the file quantity in designate path.

Syntax int getFileNum(char *pssPath);

Example call int File_Num;

File_Num = getFileNum(ñC:\\Data\\ò);

Includes #include ñLIB_CL.h ò

Description The getFileNum function can get the file quantity in designate path.

Returns -1 : path error.

-2 : disk unformat.

upward 0 : file quantity.

fErrorCode None

getDirList

Purpose Get the folder information in designate path.

Syntax int getDirList(char *pssPath, char *pssBuffer);

Example call int DirNum;

char assBuffer[100];

DirNum = getDirList (ñC:\\ò, assBuffer);

Includes #include ñLIB_CL.h ò

Description The getDirList function can get the folder quantity and name in

designate path.

When pssBuffer = NULL, this function will return the buffer size.

For example, the path ñD:\ò has three folders ñProgramò, ñFontsò,

ñLookupò, then the buffer will get folder information like ñProgram Fonts

Lookupò.

PI-1X Programming Guide 54

Returns -1 : path error.

-2 : disk unformat.

upward 0 : When pssBuffer is NULL, it will return buffer size. When

pssBuffer is not NULL, it will return folder quantity.

fErrorCode None

getFileList

Purpose Get the file information in designate path.

Syntax int getFileList(char *pssPath, char *pssBuffer);

Example call int File_Num;

char assBuffer[200];

File_Num = getFileList(ñD:\\Lookup\\ò, assBuffer);

Includes #include ñLIB_CL.h ò

Description The getFileList function can get the file quantity and name in designate

path.

When pssBuffer = NULL, this function will return the buffer size.

For example, the path ñC:\Data\ò has two files ñStoreIn.datò,

ñStoreOut.datò, and their size are 1128 bytes and 564 bytes, then the

buffer will get file information like ñStoreIn.dat dat 1128 StoreOut.dat dat

564 ñ.

Returns -1 : path error.

-2 : disk unformat.

upward 0 : When pssBuffer = NULL, it will return buffer size. When

pssBuffer != NULL, it will return file quantity.

fErrorCode None

_fclose

Purpose Use _fclose to close a file opened earlier for buffered input/output using

_fopen.

Syntax int _fclose(_TFILE *file_pointer);

Example call _fclose(infile);

Includes #include ñLIB_CL.hò

Description The _fclose function closes the file specified by the argument

file_pointer. This pointer must have been one returned earlier when the

file was opened by _fopen. If the file is opened for writing, the contens

of the buffer associated with the file are flushed before the file is closed.

The buffer is then released.

Returns If the file is successfully closed, _fclose returns a zero. In case of an

error, the return value is equal to the constant EOF.

_fcloseAll

PI-1X Programming Guide 55

Purpose Use _fcloseAll to close all files opened for buffered input/output with

_fopen or tmpfile.

Syntax void _fcloseAll(void);

Example call _fcloseAll();

Includes #include ñLIB_CL.hò

Description The _fcloseAll function closes all files that have been opened by _fopen

or tmpfile for buffered I/O. Buffers associated with files opened for

writing are written out to the corresponding file before closing.

_filelength

Purpose Use _filelength to dertimine the length of a file in bytes.

Syntax size_t _filelength(_TFILE* file_pointer);

Example call file_size = _filelength(infile);

Includes #include ñLIB_CL.hò

Description The _filelength function returns the size in number of bytes of the file

specified in the argument file_pointer. This pointer should be the return

value of earlier opened file by _fopen.

Returns The integer value returned by _filelength is the size of the file in number

of bytes.

_fopen

Purpose Use _fopen to open a file for buffered input/output operations.

Syntax _TFILE* _fopen(const char*filename, const char *access_mode);

Example call input_file = _fopen("c:\\data\\order.dat", "r");

Includes #include ñLIB_CL.hò

Description The fopen function opens the file specified in the argument filename.

The type of operations you intend to perform on the file must be given

in the argument access_mode. The following table explains the values

that the access_mode string can take:

Access

Mode String

Interpretation

r Opens file for read operations only. The _fopen

function fails if the file does not exist.

w Opens a new file for writing. If the file exists, its

contents are destroyed.

r+ Opens an existing file for both read and write

operations. Error is returned if file does not exist.

w+ Creates a file and opens it for both reading and

writing. If file exists, current contents are destroyed.

PI-1X Programming Guide 56

Returns If the file is opened successfully, _fopen returns a pointer to the file.

Actually, this is a pointer to a structure of type _TFILE, which is defined

in the header file. The actual structure is allocated elsewhere and you

do not have to allocate it. In case of an error, _fopen returns a NULL.

_fread

Purpose Use _fread to read a specified number of data items, eachof a given

size, from the current position in a file opened for buffered input. The

current position is updated after the read.

Syntax size_t _fread(const void *buffer, size_t size, size_t count, _TFILE

*file_pointer);

Example call Numread = _fread(buffer, sizeof(char), 80, infile);

Includes #include ñLIB_CL.hò

Description The fread function reads count data items, each of size bytes, starting

at the current read position of the file specified by the argument

file_pointer. After the read is complete, the current position is updated.

You must allocate storage for a buffer to hold the number of bytes that

you expect to read. This buffer is a pointer to a void data type.

Returns The _fread function returns the number of items it successfully read.

_fseek

Purpose Use _fseek to move to a new position in a file opened for buffered

input/output.

Syntax int _fseek(_TFILE *file_pointer, long offset, int origin);

Example call _fseek(infile, 0, SEEK_SET); /* Go to the beginning */

Includes #include ñLIB_CL.hò

Description The fseek function sets the current read or write position of the file

specified by the argument file_pointer to a new value indicated by the

arguments ñoff-setò and ñoriginò. The

ñoffsetò is a long integer indicating how far away the new position is

from a specific location given in ñoriginò. The following table explains

the possible value of ñoriginò.

Origin Interpretation

SEEK_SET

SEEK_CUR

Beginning of file.

Current position in the file.

Returns When successful, _fread returns a zero. In case of error, _fread returns

a non-zero value.

_fwrite

PI-1X Programming Guide 57

Purpose Use _fwrite to write a specified number of data itmes, each of a given

size, from a buffer to the current position in a file opened for buffered

output. The current position is updated after the write.

Syntax size_t _fwrite(const void *buffer, size_t size, size_t count, _TFILE

*file_pointer);

Example call numwrite = _fwrite(buffer, sizeof(char), 80, outfile);

Includes #include ñLIB_CL.hò

Description The _fwrite function writes count data items, each of size bytes, to

the file specified by the argument file_pointer, starting at the current

position. After the write operation is complete, the current position is

updated. The data to be written is in the buffer whose address is

passed to _fwrite in the argument buffer.

Returns The _fwrite function returns the number of items it actually wrote.

CreateDIR

Purpose Use CreateDIR can create a directory.

Syntax int CreateDIR(const char *pssDir_Name);

Example call CreateDIR(ñC:\\Data\\New_DIRò);

Includes #include ñLIB_CL.hò

Description The CreateDIR function can create a new folder. You can create

folder in any disk or folder.

Returns 0 : Create fail.

1 : Create success.

fErrorCode None

DeleteDIR

Purpose Use DeleteDIR can delete a directory.

Syntax int DeleteDIR(const char *pssDir_Name);

Example call DeleteDIR (ñC:\\Data\\New_DIRò);

Includes #include ñLIB_CL.hò

Description The DeleteDIR function can delete the folder exist in any disk. Before

delete folder, you have to close the using file to avoid something error.

Returns 0 : Delete fail.

1 : Delete success.

fErrorCode None

PI-1X Programming Guide 58

DBMS

Ini_Search

Purpose Use ñIni_Searchò can initiate the file search function in disk.

Syntax int Ini_Search(_TFILE* filehd,_DBMS* F_Search, unsigned char

*pusFielddlt, int record_type, int record_length, int total_field_no, int

total_record_no);

Example call _DBMS fsearch;

_TFILE *filepoint;

unsigned char field_size[5]={6,5,4,5,6};

filepoint = _fopen(ñc:\\data\\data.txtò,òr+ò);

Ini_Search(filepoint,&fsearch, field_size,0,26,5,0);

Includes #include ñDBMS.h ò

Description This function can initialize a work of searching file. After inserting every

argument, you can use _ DBMS* F _ Search to search files. Several

introduces the argument as follows:

argument description

_TFILE* filehd An opened file handle.

_DBMS* F_Search One of _DBMS start address has already

declared. Originally after the beginning

success this argument was used for written

into various kinds of search.

unsigned char *pusFielddlt When record_type is 0, search for regular

length. This function needs to insert the

unsigned char array; the array represents

the length of every field.

int record_type When record_type is 0, search for regular

length. It has no separate symbols among

field and field.

Only support regular length search.

int record_length This argument is each recordôs length.

int total_field_no This argument is the fieldôs quantity of each

record.

int total_record_no Total amount of records in the file. If does

not know the total amount, you can insert -

1, that will calculate automatically by the

system.

PI-1X Programming Guide 59

Returns 0: Initialize defeat.

1: Initialize success.

Ini_SearchAdv

Purpose Use ñIni_SearchAdvò can initiate the advance file search function in disk

Syntax int Ini_SearchAdv(_TFILE* filehd,_DBMS* F_Search, unsigned char

*pusFielddlt, unsigned char*pusKeyIdx, int slKeyField_Num, int

record_type, int record_length, int total_field_no, int total_record_no);

Example call _DBMS fsearch;

_TFILE *filepoint;

unsigned char field_size[5]={6,5,4,5,6};

unsigned char keyfield[2] = {0, 2};

int keyfieldNum = 2;

filepoint = _fopen(ñc:\\data\\data.txtò,òr+ò);

Ini_Search(filepoint, &fsearch, field_size, keyfield , keyfieldNum, 0, 26, 5,

0);

Includes #include ñDBMS.h ò

Description This function can initialize a work of advance searching file. After inserting

every argument, you can use _ DBMS* F _ Search to search files.

When using this function to initial a DBMS search, you have to take care

for:

1. When initial, we will make a index file in C disk, so it has to take a few

time.

2. The index filename will be similar to origin file. For example, the

lookup file name is ñAAA.txtò, the index filename will be ñAAA.idxò. So,

you have to check the duplicate filename to avoid error fo making

index file.

3. You have to reserve some space for the function to make index file in

C disk.

Several introduces the argument as follows:

argument description

_TFILE* filehd An opened file handle.

_DBMS* F_Search One of _DBMS start address has already

declared. Originally after the beginning

success this argument was used for written

into various kinds of search.

PI-1X Programming Guide 60

unsigned char *pusFielddlt When record_type is 0, search for regular

length. This function needs to insert the

unsigned char array; the array represents

the length of every field.

unsigned char *pusKeyIdx This argument can give max. 8 key fields

for search. We will make a checksum index

file for these key fields.

int slKeyField_Num This argument can give the sum of

pusKeyIdx size, for sum of key fields.

int record_type When record_type is 0, search for regular

length. It has no separate symbols among

field and field.

Only support regular length search.

int record_length When record_type is 0, need to insert this

value, not including the symbol of line feed.

int total_field_no This argument is the fieldôs quantity of each

record.

int total_record_no Total amount of records in the file. If does

not know the total amount, you can insert -

1, that will calculate automatically by the

system.

Returns 0: Initialize defeat.

1: Initialize success.

-1: Argument ñpusKeyIdxò or ñslKeyField_Numò is error, please check it.

-2: Cannot make a IDX file, please check your lookup filename or C disk

size.

Close_Search

Purpose Use ñClose _ Searchò can close the file search function in Disk C and D.

Syntax int Close_Search(_DBMS* F_Search);

Example call Close_Search(&F_Search);

Includes #include ñDBMS.hò

Description When want to finish the file searching state, you can use this function.

Returns 0: Close defeat.

1: Close success.

SearchField

Purpose SearchField can search the appointed field that begin from the appointed

record and compare with importing string. If agreeing, pass back to the

first record.

PI-1X Programming Guide 61

Syntax int SearchField(_DBMS* F_Search, char* field, int search_fieldno, int

recordno, int flag);

Example call char str[8]=òabcdefgò;

int Record_Num;

Record_Num =SearchField(&fsearch, str,0,0,FORWARD);

Includes #include ñDBMS.hò

Description Several describe the argument as follows:

argument description

_DBMS* F_Search The fileôs searching structure that has been

initialized.

char* field String data wanted to match.

int search_fieldno Field wanted to search.

int recordno Begin to search from which data.

int flag FORWARD => Search from forward to

backward

BACKWARD => Search from backward to

forward

As success of searching, the file index will

stay in successful record front. When

search defeat, the file index will not be

moved.

Returns -1: Search defeat.

Other value: Match the record position of data

SearchField_GR

Purpose SearchField_GR can search the appointed field that begin from the

appointed record and compare with importing string. If agreeing, it will

copy the record which included the field to buffer.

Syntax int SearchField_GR(_DBMS* F_Search, char* field, int search_fieldno, int

recordno, char* R_Buffer, int flag);

Example call char str[8]=òabcdefgò,str_buffer[60];

SearchField_GR(&fsearch, str,0,0, str_buffer,FORWARD);

Includes #include ñDBMS.hò

Description This function can search and contrast the data of appointed field. After

success, reading the record which includes this field.

Several describe the argument as follows:

argument description

_DBMS* F_Search The fileôs searching structure that has been

initialized.

PI-1X Programming Guide 62

char* field String data wanted to match.

int search_fieldno Field wanted to search.

int recordno Begin to search from which data.

char* R_Buffer After contrast success, it will write record

which included this field into buffer.

int flag FORWARD => Search from forward to

backward

BACKWARD => Search from backward to

forward

As success of searching, the file index will

stay in successful record front. When

search defeat, the file index will not be

moved.

Returns When ñR _ Buffer = NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the size of space for buffer.

When ñR _ Buffer Í NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the record position which confirm to contrast data.

SearchField_GF

Purpose Search the designated field. After success, acquiring the appointed field

in including the fieldôs record.

Syntax int SearchField_GF(_DBMS* F_Search, char* field, int search_fieldno, int

recordno, int get_field_no, char* F_Buffer, int flag);

Example call char str[8]=òabcdefgò,str_buffer[60];

SearchField_GF(&fsearch, str,0,0,1,str_buffer,FORWARD);

Includes #include ñDBMS.hò

Description Search the correctly appointed field. After search success, acquiring

another appointed field which including record of this field.

Several describe the argument as follows:

argument description

_DBMS* F_Search The fileôs searching structure that has been

initialized.

char* field String data wanted to match.

int search_fieldno Field wanted to search.

int recordno Begin to search from which data.

int get_field_no After contrasting success, acquiring the

data of appointed field in this record.

PI-1X Programming Guide 63

char* F_Buffer After contrast success, it will write record

which included this field into buffer.

int flag FORWARD => Search from forward to

backward

BACKWARD => Search from backward to

forward

As success of searching, the file index will

stay in successful record front. When

search defeat, the file index will not be

moved.

Returns When ñF _ Buffer = NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the size of space for buffer.

When ñF _ Buffer Í NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the record position which confirm to contrast data.

SearchMultiField_GF

Purpose Search the designated field. The fieldôs information include field string

and field number.You can write many fields in this field buffer. After

searching success, acquiring the appointed field in including this fieldôs

record.

Syntax int SearchMultiField_GF(_DBMS* F_Search, char* multi_field, int

recordno, int get_field_no, char* F_Buffer, int flag);

Example call char str[20]=ò00001,0;abcdefg,1ò,str_buffer[60];

SearchMultiField_GF(&fsearch, str, 0,3,str_buffer,FORWARD);

Includes #include ñDBMS.hò

Description Search the correctly appointed field. After search success, acquiring

another appointed field which including record of this field.

Several describe the argument as follows:

argument description

_DBMS* F_Search The fileôs searching structure that has been

initialized.

char* multi_field String data wanted to match.

The string form is ñfield string 0, field

number 0; field string 1, field number 1;...ò.

Each field string and field number use

separate symbol ò,ò, behind the field number

use separate symbol ò;ò, last field number

donôt use any separate symbol.

int recordno Begin to search from which data.

PI-1X Programming Guide 64

int get_field_no After contrasting success, acquiring the data

of appointed field in this record.

char* F_Buffer After contrast success, it will write record

which included this field into buffer.

int flag FORWARD => Search from forward to

backward

BACKWARD => Search from backward to

forward

As success of searching, the file index will

stay in successful record front. When search

defeat, the file index will not be moved.

Returns When ñF _ Buffer = NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the size of space for buffer.

When ñF _ Buffer Í NULLò, pass back ï 1: Search defeat; Pass other

value back: That is the record position which confirm to contrast data.

SeekRecord

Purpose Move the searching index to the appointed record.

Syntax long SeekRecord(_DBMS* F_Search,int recordno);

Example call SeekRecord(&fsearch,10);//move file index to eleventh record̢

Includes #include ñDBMS.hò

Description Use this function can move the search index to appointed record. The

number of first record is 0. The number of second record is 1.

Returns -1: The index move is defeated.

Other value: the present address of searching index

GetRecordNum

Purpose Use this function can read the total amount of records storing in the file at

present. .

Syntax int GetRecordNum(_DBMS* F_Search);

Example call int record_num;

record_num= GetRecordNum(&fsearch);

Includes #include ñDBMS.hò

Description GetRecordNum can pass back the amount of record storing in the file at

present.

Returns Amount of record that stores in the file

DeleteRecord

Purpose Use this function can delete the appointed record in the file.

Syntax int DeleteRecord(_DBMS* F_Search,int recordnum);

Example call DeleteRecord(&fsearch,2);//delete the third data of this file̢

PI-1X Programming Guide 65

Includes #include ñDBMS.hò

Description ñDeleteRecordò can delete the appointed record, and change the size of

the file.

As success of deleting, file index will stay in the deleting record front. As

deleting defeat, file index will not move.

Returns 0: Delete defeat. 1: Delete success.

DeleteLastRecord

Purpose Use this function can delete the last record in the file.

Syntax int DeleteLastRecord(_DBMS* F_Search);

Example call DeleteLastRecord(&fsearch);

Includes #include ñDBMS.hò

Description ñDeleteLastRecordò can delete the last record in the file, and change the

size of the file.

As success of deleting, file index will stay in deleting record front. As

deleting defeat, file index will not move.

Returns 0: Delete defeat. 1: Delete success.

AppendRecord

Purpose Use this function can increase a new record on the file end.

Syntax int AppendRecord(_DBMS* F_Search,char* record);

Example call char str_record[25]=òA1357924680,PA-20,3500ò;

AppendRecord(&fsearch, str_record);

Includes #include ñDBMS.hò

Description ñAppendRecordò can increase a new record on the file end, the data of

record is introduced by char * record.

As increasing success, file index will be moved to the front of increasing

record.

Returns -1: Write into defeat.

Other value: the quantity of the data.

WriteField

Purpose Use this function can revise the designated record in the existed file.

Syntax int WriteField(_DBMS* F_Search, int recordno, int fieldno, char* field);

Example call char str_field[10]=ò123456789ò;

WriteField(&fsearch,0,1, str_field);// Revise the second field of the first

data to ñstr_fieldò.

As revising success, file index will be moved to the front of the record

included revising field.

Includes #include ñDBMS.hò

Description Using WriteField function can copy the field of appointed record. If the file

PI-1X Programming Guide 66

in disc D that you want to write, it will not allow to write.

Returns -1: Write into defeat.

Other value: Write into the amount of data.

WriteRecord

Purpose Using this function can copy the existed record.

Syntax int WriteRecord(_DBMS* F_Search, int recordno, char* record);

Example call char str_record[20]=òA123456,PA-20,2330ò;

WriteRecord(&fsearch,0, str_record);// Revise the first record to char

str_record̢

Includes #include ñDBMS.hò

Description Use WriteRecord function can copy the existed record, but unable to

increase a new record.

As revising success, file index will be moved to revise the front of revising

record. If the file in disc D that you want to write, it will not allow to write.

Returns -1: Write into defeat.

Other value: Write into the amount of data.

ReadField

Purpose Use this function to read the data of appointed field in the appointed

record.

Syntax int ReadField(_DBMS* F_Search, int recordno, int fieldno, char* buffer);

Example call char str_buffer[30];

ReadField(&fsearch,5,0,str_buffer);//Reading the data of first field in the

sixth record, and store to ñstr_bufferò.

Includes #include ñDBMS.hò

Description int recordno : Read of record position.

int fieldno : Read of field position.

char* buffer : Read the storing space of field̢

Returns When char * buffer = NULL, functions will pass the data size back. Read

defeat: Pass back - 1.

When char * buffer Í NULL. Read succeed: Pass 1 back; Read defeat:

Pass back - 1.

ReadRecord

Purpose Use this function to read the data of appointed record.

Syntax int ReadRecord(_DBMS* F_Search, int recordno, char* buffer);

Example call char str_buffer[30];

ReadRecord (&fsearch,5,str_buffer);//Reading the data of sixth record,

and store to ñstr_bufferò.

Includes #include ñDBMS.hò

PI-1X Programming Guide 67

Description int recordno : Read of record position̢

char* buffer : Read the storing space of field̢

Returns When char * buffer = NULL, functions will pass materials size back. Read

defeat. Pass back - 1.

When char * buffer does not equal NULL. Read succeed. Passing 1 back;

Read defeat. Pass back - 1.

PI-1X Programming Guide 68

LED

set_led

Purpose To set the LED indicators

Syntax void set_led(int led, int mode, int duration);

Example call set_led(LED_RED, LED_FLASH, 30);

Includes #include ñLIB_CL.h ò

Description led description

LED_GREEN LED moving display green light.

LED_RED LED moving display red light.

LED_ORANGE LED moving display orange light.

mode description

LED_OFF off for (duration X 0.01) seconds then on

LED_ON on for (duration X 0.01) seconds then off

LED_FLASH flash, on then off each for (duration X 0.01)

seconds then repeat

Returns none

PI-1X Programming Guide 69

Keypad

Each special key value:

KEY_UP 0x05 KEY_DOWN 0x06

KEY_LEFT 0x07 KEY_RIGHT 0x0b

KEY_ESC 0x1b KEY_BS 0x08

KEY_CR 0x0d KEY_P1 0x15

KEY_P2 0x16 KEY_P3 0x17

clr_kb

Purpose To clear the keyboard buffer.

Syntax void clr_kb(void);

Example call clr_kb();

Includes #include ñLIB_CL.h ò

Description The clr_kb function clears the keyboard buffer. This function is

automatically called by the system program upon power up.

Returns none

dis_alpha

Purpose Disable alphabet key stroke processing.

Syntax void dis_alpha(void);

Example call dis_alpha();

Includes #include ñLIB_CL.h ò

Description The dis_alpha function disables the alphabet key stroke processing. If the

alpha lock status is on prior to calling this function, it will become off after

calling this function.

Returns none

en_alpha

Purpose Enable alphabet key stroke processing.

Syntax void en_alpha(void);

Example call en_alpha();

Includes #include ñLIB_CL.h ò

Description The en_alpha function enables the alphabet key stroke processing.

Returns none

get_alpha_enable_state

Purpose Get the status of the alphabet key stroke processing.

Syntax void get_alpha_enable_state (void);

Example call get_alpha_enable_state ();

Includes #include ñLIB_CL.h ò

PI-1X Programming Guide 70

Description This routine gets the current status, enable/disable, of the alphabet key

stroke processing. The default is enabled.

Returns 1, if the alphabet key stroke processing is enabled.

0, if disabled.

set_alpha_mode_state

Purpose Set the status of the alphabet mode status.

Syntax void set_alpha_mode_state(int status);

Example call set_alpha_mode_state(0);

Includes #include ñLIB_CL.h ò

Description This function can set alphabet mode.

status = 0 : Numeric input.

status = 1 : Lowercase input.

status = 2 : Uppercase input.

Returns none

get_alpha_mode_state

Purpose Get the status of the alphabet mode status.

Syntax int get_alpha_mode_state(void);

Example call get_alpha_mode_state();

Includes #include ñLIB_CL.h ò

Description This function can get alphabet mode status.

Returns 0 : Numeric input.

1 : Lowercase input.

2 : Uppercase input.

set_keypad_BL

Purpose Set keypad and LCD backlight on/off.

Syntax void set_keypad_BL(BOOL bStatus);

Example call set_keypad_BL(1);//Key backlight on.

Includes #include ñLIB_CL.h ò

Description This function can set keypad backlight on or off.

bStatus = 0 off backlight.

bStatus = 1 on keypad backlight, LCD backlight is Level 1.

bStatus = 2 on keypad backlight, LCD backlight is Level 2.

bStatus = 3 on keypad backlight, LCD backlight is Level 3.

Returns None

get_keypad_BL

Purpose Get keypad and LCD backlight on/off status.

Syntax BOOL get_keypad_BL(void);

Example call if (get_keypad_BL())

PI-1X Programming Guide 71

 _printf (ñKey Backlight onò);

Includes #include ñLIB_CL.h ò

Description This function can get keypad backlight status.

Returns 0 off backlight.

1 on keypad backlight, LCD backlight is Level 1.

2 on keypad backlight, LCD backlight is Level 2.

3 on keypad backlight, LCD backlight is Level 3.

set_keypad_BL_Timer

Purpose Set keypad and LCD backlight timer.

Syntax void set_keypad_BL_Timer(int slTimer);

Example call set_keypad_BL_Timer(1);//Set keypad and LCD backlight timer for 1 sec.

Includes #include ñLIB_CL.h ò

Description This function can set keypad and LCD backlight timer.

Returns None

get_keypad_BL_Timer

Purpose Get keypad and LCD backlight timer.

Syntax int get_keypad_BL_Timer(void);

Example call int slkeypadimer;

slkeypadimer = get_keypad_BL_Timer();

Includes #include ñLIB_CL.h ò

Description This function can get keypad and LCD backlight timer.

Returns 0: Keypad backlight always on

Other: The timer for keypad backlight(sec.).

kbhit

Purpose Check keybuffer is empty or not.

Syntax int kbhit(void);

Example call kbhit();

Includes #include ñLIB_CL.h ò

Description This function can check keybuffer is empty or not.

Returns 0: Keybuffer is empty.

1: Keybuffer is not empty.

_getchar

Purpose Get one key stroke from the keyboard buffer.

Syntax int _getchar(void);

Example call c=_getchar ();

if (c > 0) _printf(ñKey %d pressedò,c);

else printf(ñNo key pressedò);

Includes #include ñLIB_CL.h ò

PI-1X Programming Guide 72

Description The getchar function reads one key stroke from the keyboard buffer and

then removes the key stroke from the keyboard buffer. It will pass the

value back, and clear the buffer. If there is no any key press before, it will

pass NULL(0X00) back.

Returns The getchar function returns the key stroke read from the keyboard

buffer. If the keyboard buffer is empty, a null character (0x00) is returned.

The keystroke returned is the ASCII code of the key being pressed.

GetKeyClick

Purpose Get current key click status

Syntax int GetKeyClick(void);

Example call state = GetKeyClick();

Includes #include ñLIB_CL.h ò

Description The function returns an integer indicates the key click staus.The default is

enabled.

Returns 1, if key click sound is enabled.

0, if key click sound is disabled.

SetKeyClick

Purpose To enable / disable the key click sound.

Syntax void SetKeyClick(int status);

Example call SetKeyClick(1); /* enable the key click sound */

Includes #include ñLIB_CL.h ò

Description This routine truns on or off the key click sound

1, if key click sound is enabled.

0, if key click sound is disabled.

Returns none

Def_PKey

Purpose Change progrom key 1 ~ 3(P1 ~ P3) key define.

Syntax void Def_PKey(int nPKey, char ssDef);

Example call Def_PKey (KEY_P1, KEY_CR); /*Change P1 key to ENT key*/

Includes #include ñLIB_CL.h ò

Description This function can change the program key (P1 ~ P3) to other key define.

For example, change P1 key to ENT key or ESC key.

Returns none

Def_PKey_MultiInput

Purpose Change progrom key 1 ~ 3(P1 ~ P3) key define.

PI-1X Programming Guide 73

Syntax void Def_PKey_MultiInput(int nPKey, char* ssDef, int slKeys);

Example call char assKeyDefine[4] = { KEY_UP, KEY_DOWN, KEY_LEFT, 0}

Def_PKey_MultiInput(KEY_P1, assKeyDefine, 3);

Includes #include ñLIB_CL.h ò

Description This function can change the program key (P1 ~ P3) to other multi input

key define. For example, change P1 key to input up, down and left key.

Returns none

FNKey_Reset

Purpose To reset all of FN-Key setting.

Syntax void FNKey_Reset(void);

Example call FNKey_Reset();

Includes #include ñLIB_CL.h ò

Description Reset all FN-key to initial status.

Returns none

FNKey_GetState

Purpose To check the FN-Key setting that is custom or default.

Syntax char FNKey_GetState(short smKeyNum);

Example call if (FNKey_GetState(0))

_printf(ñFN + 0 key is custom settingò);

Includes #include ñLIB_CL.h ò

Description You can check the FN-Key function that is default setting or

custom setting.

smKeyNum: 0 Ą FN + 0, 1 Ą FN + 1, 2 Ą FN +3 ~~~~~ 9 Ą FN + 9

Returns 1 : Custom Setting̢

0 : Default Setting̢

-1: Error̢

FNKey_SetUserDef

Purpose To set a custom setting for FN-Key.

Syntax char FNKey_SetUserDef(short smKeyNum, void (*pslFunction)(void));

Example call void Sample01FN(void)

{

 _printf(ñThis is Test!!ò);

}

void SetFNKey(void)

{

 if (FNKey_SetUserDef(0, Sample01FN))

 {

 _printf(ñSet F0 UserDefine OK!ò);

PI-1X Programming Guide 74

 }

 if (FNKey_SetUserDef(0, NULL))

 {

 _printf(ñSet F0 Default OK!ò);

 }

}

Includes #include ñLIB_CL.h ò

Description The function is used to set the FN-Key. After set successed, the

FN-Key is changed for custom setting function. You can set FN+ 0~9, if

you want to set default, please set pslFunction = NULL.

smKeyNum: 0 Ą FN + 0, 1 Ą FN + 1, 2 Ą FN +3 ~~~~~ 9 Ą FN + 9

Returns 1 : Set success̢

0 : Set false̢

_scanf

Purpose Use _scanf to read character strings from the standard input file and

covert the strings to values of C variables according to specified formats.

Syntax int _scanf (const char *format, ...);

Example call char assBuffer[10];

_scanf (ñ%sò, assBuffer);

Includes #include ñLIB_CL.h ò

Description The _scanf function accepts a variable number of arguments, which it

interprets as addresses of C variables, and reads character strings,

representing their values. It converts them to their internal representations

using formatting commands embedded in the argument format, which

must be present in a call to _scanf.

The interpretation of the variables depends on the forma. The formatting

command for each variable begins with a % sign and can contain other

characters as well. A whitespace character (a blank space, a tab, or a new

line) may cause _scanf to ignore whitespace characters from keyboard.

Other nonwhitespace characters, excluding the % sign, cause _scanf to

ignore each matching character from the input. It begins to interpret the

first nonmatching character as the value of variable that is being read.

For each C variable whose address is included in the argument list to

_scanf, there must be a format specification embedded in the format. For

the complete format specification accepted by the _scanf function, please

refer to the scanf function in Turbo C++.

If you want input a float value, the value type is ñ double ñ, not ñ float ñ.

Returns The _scanf function returns the number of input items that were

PI-1X Programming Guide 75

successfully read, converted, and saved in variables. A return value equal

to EOF means that an end-of-file was encountered during the read

operation.

_scanf_DefaultStr

Purpose Use _scanf_DefaultStr to set a default string in input and read character

strings from the standard input file and covert the strings to values of C

variables according to specified formats.

Syntax int _scanf_DefaultStr(char* assDefaultStr, const char *format, ...);

Example call char assBuffer[10] = ñABCò;

_scanf_DefaultStr(assBuffer , ñ%sò, assBuffer);

Includes #include ñLIB_CL.h ò

Description The _scanf_DefaultStr function accepts a variable number of

arguments, which it interprets as addresses of C variables, and reads

character strings, representing their values. It converts them to their

internal representations using formatting commands embedded in the

argument format, which must be present in a call to _scanf_DefaultStr.

The interpretation of the variables depends on the forma. The formatting

command for each variable begins with a % sign and can contain other

characters as well. A whitespace character (a blank space, a tab, or a new

line) may cause _scanf_DefaultStr to ignore whitespace characters from

keyboard. Other nonwhitespace characters, excluding the % sign, cause

_scanf_DefaultStr to ignore each matching character from the input. It

begins to interpret the first nonmatching character as the value of variable

that is being read.

For each C variable whose address is included in the argument list to

_scanf_DefaultStr, there must be a format specification embedded in the

format. For the complete format specification accepted by the

_scanf_DefaultStr function, please refer to the scanf function in Turbo

C++.

If you want input a float value, the value type is ñ double ñ, not ñ float ñ.

Returns The _scanf_DefaultStr function returns the number of input items that

were successfully read, converted, and saved in variables. A return value

equal to EOF means that an end-of-file was encountered during the read

operation.

_scanf_ctrl_ScannerStatus

Purpose Set scanner on/off when use ñ_scanfò function.

Syntax void _scanf_ctrl_ScannerStatus(BOOL bStatus);

Example call _scanf_ctrl_ScannerStatus(TRUE);

PI-1X Programming Guide 76

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set scanner status.

TRUE : Scanner on.

FALSE : Scanner off.

Returns none

_scanf_ctrl_ScannerSleep

Purpose Set scanner sleep on/off when use ñ_scanfò function.

Syntax void _scanf_ctrl_ScannerSleep(BOOL bStatus);

Example call _scanf_ctrl_ScannerSleep(TRUE);

Includes #include ñLIB_CL.h ò

Description After use ñ_scanfò function, this function can set scanner status in sleep

mode or stop.

If use this function and set status ñTRUEò, when left ñ_scanfò function,

scanner will sleep, and when you use ñ_scanfò function next time, the

scanner will not reinitial. That can make the ñ_scanfò function speed up.

TRUE : Scanner sleep.

FALSE : Scanner not sleep.

Returns none

_scanf_ctrl_Vibrate

Purpose Set vibrate on/off when use ñ_scanfò function and scanner status on.

Syntax void _scanf_ctrl_Vibrate(BOOL bEnable);

Example call _scanf_ctrl_Vibrate(TRUE);//Enable vibrate

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set vibrate on/off after

scanner read.

TRUE : Vibrate on.

FALSE : Vibrate off.

Returns none

_scanf_ctrl_ScanWithENT

Purpose Set ENT auto press on/off when use ñ_scanfò function and scanner status

on.

Syntax void _scanf_ctrl_ScanWithENT(BOOL bScanEnt);

Example call _ scanf_ctrl_ScanWithENT (TRUE);

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set auto press ENT key

after scanner read.

PI-1X Programming Guide 77

TRUE : Auto press ENT on.

FALSE : Auto press ENT off.

Returns none

_scanf_ctrl_AlphaKey

Purpose Set Alpha key function on/off when use ñ_scanfò function.

Syntax void _scanf_ctrl_AlphaKey (int status);

Example call _scanf_ctrl_AlphaKey (TRUE);

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set enable/disable alpha

key when key input.

TRUE : Enable alpha key.

FALSE : Disable alpha key.

Returns none

_scanf_ctrl_AlphaKey_Mode

Purpose Set alpha mode when use ñ_scanfò function.

Syntax void _scanf_ctrl_AlphaKey_Mode(int slAlphaMode);

Example call _scanf_ctrl_AlphaKey_Mode(ALPHA_123);//Set keypad input for number.

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set alpha mode when key

input.

ALPHA_123 : For input number.

ALPHA_abc : For input lower character.

ALPHA_ABC : For input upper character.

Returns

_scanf_ctrl_password

Purpose Set display for general or user define when use ñ_scanfò function.

Syntax void _scanf_ctrl_password (char ssPassWord);

Example call _scanf_ctrl_password (ó*ô);

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set enable/disable alpha

key when key input.

0 : Input character nomoral display.

others : Input character display define word.

Returns none

PI-1X Programming Guide 78

_scanf_ctrl_KeypadLock

Purpose Set keypad lock on/off when use ñ_scanfò function.

Syntax void _scanf_ctrl_KeypadLock(BOOL bLock);

Example call _scanf_ctrl_KeypadLock(FALSE);

Includes #include ñLIB_CL.h ò

Description When use ñ_scanfò function, this function can set keypad input lock

on/off except ENT key ,ESC key and Scan key.

TRUE : Keypad lock

FALSE : Keypad unlock.

Returns none

_scanf_DataMagic

Purpose Use _scanf_ DataMagic to read character strings from the standard input

file and covert the strings to values of C variables according to specified

formats. After these actions, it will convert strings according to ñData

Magicò file..

Syntax int _scanf_DataMagic(char *pssProfile, const char *format, ...);

Example call char assBuffer[100];

DataMagic_Set(ñC:\\Data\\Sample.dmfò);

_scanf_ctrl_ScanWithENT(TRUE);

_scanf_DataMagic (ñDM_ProFileò, ñ%sò, assBuffer);

Includes #include ñLIB_CL.h ò

Description The _scanf_ DataMagic function only accepts a string input, from scanner

or keyboard.

So, this function only support ñstringò convert. If you use ñvalueò,there will

be something wrong.

Before use this function, please use ñDataMagic_Setò function for initial

Data Magic file, and set ñ_scanf_ctrl_ScanWithENTò for TRUE.

Returns 0:No input.

1:Success

0xff:Esc exit.

-10:Data Magic file is not initial.

-11:No profile in this Data Magic file.

-12:No match rule to convert.

PI-1X Programming Guide 79

LCD

The following functions clr_eol, clr_rect, clr_scr, fill_rect, fill_rect, Get_Cursor, Set_Cursor,

gotoxy, wherex, wherexy, wherey, _printf, _putchar, _puts and show_image_bmp only effect

the current TextBlock. The parameters of those function will base on TextBlockôs size and

position.

clr_eol

Purpose Clear from where the cursor is to the end of the line. The cursor position is

not affected after the operation.

Syntax void clr_eol(void);

Example call clr_eol();

Includes #include ñLIB_CL.h ò

Description The clr_eol function clears from where the cursor is to the end of the line,

and then moves the cursor to the original place.

Returns None

clr_rect

Purpose Clear a rectangular area on the LCD display. The cursor position is not

affected after the operation.

Syntax void clr_rect(int left, int top, int width, int height);

Example call clr_rect(10,5,30,10);

Includes #include ñLIB_CL.h ò

Description The clr_rect function clears an rectangular area on the LCD display whose

top left position and size are specified by left, top, width, and height. The

cursor position is not affected after the operation. Several introduces the

argument as follows:

left Clear form the start point of X-axis.

top Clear form the start point of Y-axis.

width Clear the width form the start point.

height Clear the high form the start point.

Returns None

clr_scr

Purpose Clear LCD display.

Syntax void clr_scr(void);

Example call clr_scr();

Includes #include ñLIB_CL.h ò

Description The clr_scr function clears the LCD display and places the cursor at the

first column of the first line, that is (0,0) as expressed with the coordinate

PI-1X Programming Guide 80

system.

Returns None

fill_rect

Purpose Fill a white rectangular area on the LCD display.

Syntax void fill_rect(int left, int top, int width, int height);

Example call fill_rect (10,5,30,10);

Includes #include ñLIB_CL.h ò

Description The fill_rect function fills a rectangular area white on the LCD display

whose top left position and size are specified by left, top, width, and

height. The cursor position is not affected after the operation.Several

introduces the argument as follows:

left Fill form the start point of X-axis.

top Fill form the start point of Y-axis.

width Fill the width form the start point.

height Fill the high form the start point.

Returns None

reverse_rect

Purpose To reserve the rectangular area on the LCD display.

Syntax void reverse_rect(int left, int top, int width, int height);

Example call reverse_rect (10,5,30,10);

Includes #include ñLIB_CL.h ò

Description The reverse_rect function reverse a rectangular area on the LCD display

whose top left position and size are specified by left, top, width, and

height. The cursor position is not affected after the operation.Several

introduces the argument as follows:

left Fill form the start point of X-axis.

top Fill form the start point of Y-axis.

width Fill the width form the start point.

height Fill the high form the start point.

Returns None

Get_Cursor

Purpose Get current cursor status.

Syntax int Get_Cursor(void);

Example call if (Get_Cursor() ==0) _puts(ñCursor Offò);

Includes #include ñLIB_CL.h ò

Description The Get_Cursor function checks if the cursor is visible or not.

Returns The Get_Cursor function returns an integer of 1 if the cursor is visible

PI-1X Programming Guide 81

(turned on), 0 if not.

Set_Cursor

Purpose Turn on or off the cursor of the LCD display.

Syntax void Set_Cursor(int status);

Example call Set_Cursor (0);//Cursor off

Includes #include ñLIB_CL.h ò

Description The Set_Cursor function displays or hides the cursor of the LCD display

according to the value of status specified. If status equals 1, 2, or 3, the

cursor will be turned on to show the current cursor position. If status

equals 0, the cursor will be invisible.

status Curser status

0 Cursor off.

1 Cursor on, and cursor type is a line as _.

2 Cursor on, and cursor type is a line as |.

3 Cursor on, and cursor type is a block as Ʈ.

Returns None

gotoxy

Purpose Move cursor to new position.

Syntax int gotoxy(int x_position, int y_position);

Example call gotoxy(3,2);/* Move to third line of the fourth row */

Includes #include ñLIB_CL.h ò

Description The gotoxy function moves the cursor to a new position whose

coordinate is specified in the argument x_position and y_position.

Returns Normally the gotoxy function will return an integer value of 1 when

operation completes. In case of LCD fault, 0 is returned to indicate error.

wherex

Purpose Get x-coordinate of the cursor location.

Syntax int wherex(void);

Example call x_position = wherex();

Includes #include ñLIB_CL.h ò

Description The wherex function determines the current x-coordinate location of the

cursor.

Returns The wherex function returns the x-coordinate of the cursor location.

wherexy

Purpose Get x-coordinate and y-coordinate of the cursor location

Syntax int wherexy(int* column, int* row);

Example call wherexy(&x_position,&y_position);

